| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | |||
| 2 | #include "vk_engine.h" | ||
| 3 | |||
| 4 | #include <SDL.h> | ||
| 5 | #include <SDL_vulkan.h> | ||
| 6 | |||
| 7 | #include <vk_initializers.h> | ||
| 8 | #include <vk_types.h> | ||
| 9 | |||
| 10 | #include "VkBootstrap.h" | ||
| 11 | |||
| 12 | #include <fstream> | ||
| 13 | #include <iostream> | ||
| 14 | |||
| 15 | #include "vk_textures.h" | ||
| 16 | |||
| 17 | #define VMA_IMPLEMENTATION | ||
| 18 | #include "vk_mem_alloc.h" | ||
| 19 | |||
| 20 | #include "imgui_impl_sdl2.h" | ||
| 21 | #include "imgui_impl_vulkan.h" | ||
| 22 | |||
| 23 | constexpr bool bUseValidationLayers = true; | ||
| 24 | |||
| 25 | VulkanEngine* _engine = nullptr; | ||
| 26 | |||
| 27 | VulkanEngine::VulkanEngine() { _engine = this; }; | ||
| 28 | |||
| 29 | VulkanEngine& VulkanEngine::instance() { return *_engine; } | ||
| 30 | |||
| 31 | // we want to immediately abort when there is an error. In normal engines this would give an error | ||
| 32 | // message to the user, or perform a dump of state. | ||
| 33 | using namespace std; | ||
| 34 | #define VK_CHECK(x) \ | ||
| 35 | do { \ | ||
| 36 | VkResult err = x; \ | ||
| 37 | if (err) { \ | ||
| 38 | std::cout << "Detected Vulkan error: " << err << std::endl; \ | ||
| 39 | abort(); \ | ||
| 40 | } \ | ||
| 41 | } while (0) | ||
| 42 | |||
| 43 | void VulkanEngine::init() { | ||
| 44 | // We initialize SDL and create a window with it. | ||
| 45 | ✗ | SDL_Init(SDL_INIT_VIDEO); | |
| 46 | |||
| 47 | ✗ | SDL_WindowFlags window_flags = (SDL_WindowFlags)(SDL_WINDOW_VULKAN); | |
| 48 | |||
| 49 | ✗ | assert(_window == nullptr); | |
| 50 | ✗ | _window = SDL_CreateWindow("Vulkan Engine", | |
| 51 | SDL_WINDOWPOS_UNDEFINED, | ||
| 52 | SDL_WINDOWPOS_UNDEFINED, | ||
| 53 | ✗ | _windowExtent.width, | |
| 54 | ✗ | _windowExtent.height, | |
| 55 | window_flags); | ||
| 56 | |||
| 57 | ✗ | if (_window == nullptr) { | |
| 58 | ✗ | throw std::runtime_error(SDL_GetError()); | |
| 59 | } | ||
| 60 | |||
| 61 | ✗ | init_vulkan(); | |
| 62 | |||
| 63 | ✗ | init_swapchain(); | |
| 64 | |||
| 65 | ✗ | init_default_renderpass(); | |
| 66 | |||
| 67 | ✗ | init_framebuffers(); | |
| 68 | |||
| 69 | ✗ | init_commands(); | |
| 70 | |||
| 71 | ✗ | init_sync_structures(); | |
| 72 | |||
| 73 | ✗ | init_descriptors(); | |
| 74 | |||
| 75 | ✗ | init_imgui(); | |
| 76 | |||
| 77 | // init_pipelines(); | ||
| 78 | // load_images(); | ||
| 79 | // load_meshes(); | ||
| 80 | // init_scene(); | ||
| 81 | |||
| 82 | // everything went fine | ||
| 83 | ✗ | _isInitialized = true; | |
| 84 | ✗ | } | |
| 85 | void VulkanEngine::cleanup() { | ||
| 86 | ✗ | if (_isInitialized) { | |
| 87 | |||
| 88 | // make sure the gpu has stopped doing its things | ||
| 89 | ✗ | vkDeviceWaitIdle(_device); | |
| 90 | |||
| 91 | ✗ | _mainDeletionQueue.flush(); | |
| 92 | |||
| 93 | ✗ | vkDestroySurfaceKHR(_instance, _surface, nullptr); | |
| 94 | |||
| 95 | ✗ | vkDestroyDevice(_device, nullptr); | |
| 96 | ✗ | vkb::destroy_debug_utils_messenger(_instance, _debug_messenger); | |
| 97 | ✗ | vkDestroyInstance(_instance, nullptr); | |
| 98 | |||
| 99 | ✗ | SDL_DestroyWindow(_window); | |
| 100 | } | ||
| 101 | ✗ | } | |
| 102 | |||
| 103 | void VulkanEngine::start() {} | ||
| 104 | void VulkanEngine::handle_event(SDL_Event const& event) {} | ||
| 105 | void VulkanEngine::tick(float dt) {} | ||
| 106 | void VulkanEngine::end() {} | ||
| 107 | |||
| 108 | void VulkanEngine::draw(float dt) { | ||
| 109 | |||
| 110 | // check if window is minimized and skip drawing | ||
| 111 | ✗ | if (SDL_GetWindowFlags(_window) & SDL_WINDOW_MINIMIZED) | |
| 112 | ✗ | return; | |
| 113 | |||
| 114 | ✗ | ImGui_ImplVulkan_NewFrame(); | |
| 115 | ✗ | ImGui_ImplSDL2_NewFrame(_window); | |
| 116 | ✗ | ImGui::NewFrame(); | |
| 117 | |||
| 118 | // wait until the gpu has finished rendering the last frame. Timeout of 1 second | ||
| 119 | ✗ | VK_CHECK(vkWaitForFences(_device, 1, &get_current_frame()._renderFence, true, 1000000000)); | |
| 120 | ✗ | VK_CHECK(vkResetFences(_device, 1, &get_current_frame()._renderFence)); | |
| 121 | |||
| 122 | // now that we are sure that the commands finished executing, we can safely reset the command | ||
| 123 | // buffer to begin recording again. | ||
| 124 | ✗ | VK_CHECK(vkResetCommandBuffer(get_current_frame()._mainCommandBuffer, 0)); | |
| 125 | |||
| 126 | // request image from the swapchain | ||
| 127 | uint32_t swapchainImageIndex; | ||
| 128 | ✗ | VK_CHECK(vkAcquireNextImageKHR(_device, | |
| 129 | _swapchain, | ||
| 130 | 1000000000, | ||
| 131 | get_current_frame()._presentSemaphore, | ||
| 132 | nullptr, | ||
| 133 | &swapchainImageIndex)); | ||
| 134 | |||
| 135 | // naming it cmd for shorter writing | ||
| 136 | ✗ | VkCommandBuffer cmd = get_current_frame()._mainCommandBuffer; | |
| 137 | |||
| 138 | // begin the command buffer recording. We will use this command buffer exactly once, so we want | ||
| 139 | // to let vulkan know that | ||
| 140 | VkCommandBufferBeginInfo cmdBeginInfo = | ||
| 141 | ✗ | vkinit::command_buffer_begin_info(VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT); | |
| 142 | |||
| 143 | ✗ | VK_CHECK(vkBeginCommandBuffer(cmd, &cmdBeginInfo)); | |
| 144 | |||
| 145 | // make a clear-color from frame number. This will flash with a 120 frame period. | ||
| 146 | VkClearValue clearValue; | ||
| 147 | ✗ | float flash = abs(sin(_frameNumber / 120.f)); | |
| 148 | ✗ | clearValue.color = {{0.0f, 0.0f, flash, 1.0f}}; | |
| 149 | |||
| 150 | // clear depth at 1 | ||
| 151 | VkClearValue depthClear; | ||
| 152 | ✗ | depthClear.depthStencil.depth = 1.f; | |
| 153 | |||
| 154 | // start the main renderpass. | ||
| 155 | // We will use the clear color from above, and the framebuffer of the index the swapchain gave | ||
| 156 | // us | ||
| 157 | ✗ | VkRenderPassBeginInfo rpInfo = vkinit::renderpass_begin_info( | |
| 158 | ✗ | _renderPass, _windowExtent, _framebuffers[swapchainImageIndex]); | |
| 159 | |||
| 160 | // connect clear values | ||
| 161 | ✗ | rpInfo.clearValueCount = 2; | |
| 162 | |||
| 163 | ✗ | VkClearValue clearValues[] = {clearValue, depthClear}; | |
| 164 | |||
| 165 | ✗ | rpInfo.pClearValues = &clearValues[0]; | |
| 166 | |||
| 167 | ✗ | vkCmdBeginRenderPass(cmd, &rpInfo, VK_SUBPASS_CONTENTS_INLINE); | |
| 168 | |||
| 169 | // draw_objects(cmd, _renderables.data(), _renderables.size()); | ||
| 170 | ✗ | tick(dt); | |
| 171 | |||
| 172 | ✗ | ImGui::EndFrame(); | |
| 173 | ✗ | ImGui::Render(); | |
| 174 | |||
| 175 | ✗ | ImGui_ImplVulkan_RenderDrawData(ImGui::GetDrawData(), cmd); | |
| 176 | // finalize the render pass | ||
| 177 | ✗ | vkCmdEndRenderPass(cmd); | |
| 178 | // finalize the command buffer (we can no longer add commands, but it can now be executed) | ||
| 179 | ✗ | VK_CHECK(vkEndCommandBuffer(cmd)); | |
| 180 | |||
| 181 | // prepare the submission to the queue. | ||
| 182 | // we want to wait on the _presentSemaphore, as that semaphore is signaled when the swapchain is | ||
| 183 | // ready we will signal the _renderSemaphore, to signal that rendering has finished | ||
| 184 | |||
| 185 | ✗ | VkSubmitInfo submit = vkinit::submit_info(&cmd); | |
| 186 | ✗ | VkPipelineStageFlags waitStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; | |
| 187 | |||
| 188 | ✗ | submit.pWaitDstStageMask = &waitStage; | |
| 189 | |||
| 190 | ✗ | submit.waitSemaphoreCount = 1; | |
| 191 | ✗ | submit.pWaitSemaphores = &get_current_frame()._presentSemaphore; | |
| 192 | |||
| 193 | ✗ | submit.signalSemaphoreCount = 1; | |
| 194 | ✗ | submit.pSignalSemaphores = &get_current_frame()._renderSemaphore; | |
| 195 | |||
| 196 | // submit command buffer to the queue and execute it. | ||
| 197 | // _renderFence will now block until the graphic commands finish execution | ||
| 198 | ✗ | VK_CHECK(vkQueueSubmit(_graphicsQueue, 1, &submit, get_current_frame()._renderFence)); | |
| 199 | |||
| 200 | // prepare present | ||
| 201 | // this will put the image we just rendered to into the visible window. | ||
| 202 | // we want to wait on the _renderSemaphore for that, | ||
| 203 | // as its necessary that drawing commands have finished before the image is displayed to the | ||
| 204 | // user | ||
| 205 | ✗ | VkPresentInfoKHR presentInfo = vkinit::present_info(); | |
| 206 | |||
| 207 | ✗ | presentInfo.pSwapchains = &_swapchain; | |
| 208 | ✗ | presentInfo.swapchainCount = 1; | |
| 209 | |||
| 210 | ✗ | presentInfo.pWaitSemaphores = &get_current_frame()._renderSemaphore; | |
| 211 | ✗ | presentInfo.waitSemaphoreCount = 1; | |
| 212 | |||
| 213 | ✗ | presentInfo.pImageIndices = &swapchainImageIndex; | |
| 214 | |||
| 215 | ✗ | VK_CHECK(vkQueuePresentKHR(_graphicsQueue, &presentInfo)); | |
| 216 | |||
| 217 | // increase the number of frames drawn | ||
| 218 | ✗ | _frameNumber++; | |
| 219 | } | ||
| 220 | |||
| 221 | void VulkanEngine::run() { | ||
| 222 | SDL_Event e; | ||
| 223 | ✗ | bool bQuit = false; | |
| 224 | |||
| 225 | using Clock = std::chrono::high_resolution_clock; | ||
| 226 | using TimePoint = Clock::time_point; | ||
| 227 | using TimeDelta = std::chrono::duration<float, std::ratio<1, 1>>; | ||
| 228 | |||
| 229 | ✗ | TimePoint now = Clock::now(); | |
| 230 | ✗ | TimePoint prev = now; | |
| 231 | |||
| 232 | ✗ | start(); | |
| 233 | |||
| 234 | // main loop | ||
| 235 | ✗ | while (!bQuit) { | |
| 236 | // Handle events on queue | ||
| 237 | ✗ | while (SDL_PollEvent(&e) != 0) { | |
| 238 | ✗ | if (!ImGui_ImplSDL2_ProcessEvent(&e)) { | |
| 239 | // Standard Event handling | ||
| 240 | ✗ | handle_event(e); | |
| 241 | } | ||
| 242 | |||
| 243 | // close the window when user alt-f4s or clicks the X button | ||
| 244 | ✗ | if (e.type == SDL_QUIT) { | |
| 245 | ✗ | bQuit = true; | |
| 246 | ✗ | } else if (e.type == SDL_KEYDOWN) { | |
| 247 | ✗ | if (e.key.keysym.sym == SDLK_SPACE) { | |
| 248 | ✗ | _selectedShader += 1; | |
| 249 | ✗ | if (_selectedShader > 1) { | |
| 250 | ✗ | _selectedShader = 0; | |
| 251 | } | ||
| 252 | } | ||
| 253 | } | ||
| 254 | } | ||
| 255 | |||
| 256 | ✗ | now = Clock::now(); | |
| 257 | ✗ | float dt = TimeDelta(now - prev).count(); | |
| 258 | ✗ | draw(dt); | |
| 259 | ✗ | prev = now; | |
| 260 | } | ||
| 261 | ✗ | } | |
| 262 | |||
| 263 | FrameData& VulkanEngine::get_current_frame() { return _frames[_frameNumber % FRAME_OVERLAP]; } | ||
| 264 | |||
| 265 | FrameData& VulkanEngine::get_last_frame() { return _frames[(_frameNumber - 1) % 2]; } | ||
| 266 | |||
| 267 | void VulkanEngine::init_vulkan() { | ||
| 268 | ✗ | vkb::InstanceBuilder builder; | |
| 269 | |||
| 270 | // make the vulkan instance, with basic debug features | ||
| 271 | ✗ | auto inst_ret = builder.set_app_name("Example Vulkan Application") | |
| 272 | ✗ | .request_validation_layers(bUseValidationLayers) | |
| 273 | ✗ | .use_default_debug_messenger() | |
| 274 | ✗ | .require_api_version(1, 1, 0) | |
| 275 | ✗ | .desire_api_version(1, 3, 0) | |
| 276 | ✗ | .build(); | |
| 277 | |||
| 278 | ✗ | vkb::Instance vkb_inst = inst_ret.value(); | |
| 279 | |||
| 280 | // grab the instance | ||
| 281 | ✗ | _instance = vkb_inst.instance; | |
| 282 | ✗ | _debug_messenger = vkb_inst.debug_messenger; | |
| 283 | |||
| 284 | ✗ | if (SDL_Vulkan_CreateSurface(_window, _instance, &_surface) == SDL_FALSE) { | |
| 285 | ✗ | const char* msg = SDL_GetError(); | |
| 286 | ✗ | throw std::runtime_error(std::string("Surface creation failed: ") + std::string(msg)); | |
| 287 | } | ||
| 288 | |||
| 289 | // use vkbootstrap to select a gpu. | ||
| 290 | // We want a gpu that can write to the SDL surface and supports vulkan 1.2 | ||
| 291 | ✗ | vkb::PhysicalDeviceSelector selector{vkb_inst}; | |
| 292 | ✗ | auto physicalDeviceResult = selector.set_minimum_version(1, 1).set_surface(_surface).select(); | |
| 293 | ✗ | if (!physicalDeviceResult) { | |
| 294 | ✗ | throw std::runtime_error("Physical device failed"); | |
| 295 | } | ||
| 296 | ✗ | vkb::PhysicalDevice physicalDevice = physicalDeviceResult.value(); | |
| 297 | // --- | ||
| 298 | |||
| 299 | // create the final vulkan device | ||
| 300 | ✗ | vkb::DeviceBuilder deviceBuilder{physicalDevice}; | |
| 301 | ✗ | auto vkbDeviceResult = deviceBuilder.build(); | |
| 302 | ✗ | if (!vkbDeviceResult) { | |
| 303 | ✗ | throw std::runtime_error("Device failed"); | |
| 304 | } | ||
| 305 | ✗ | vkb::Device vkbDevice = vkbDeviceResult.value(); | |
| 306 | // --- | ||
| 307 | |||
| 308 | // Get the VkDevice handle used in the rest of a vulkan application | ||
| 309 | ✗ | _device = vkbDevice.device; | |
| 310 | ✗ | _chosenGPU = physicalDevice.physical_device; | |
| 311 | |||
| 312 | // use vkbootstrap to get a Graphics queue | ||
| 313 | ✗ | auto graphicsQueueResult = vkbDevice.get_queue(vkb::QueueType::graphics); | |
| 314 | ✗ | if (!graphicsQueueResult) { | |
| 315 | ✗ | throw std::runtime_error("Graphic Queue not found"); | |
| 316 | } | ||
| 317 | ✗ | _graphicsQueue = graphicsQueueResult.value(); | |
| 318 | // --- | ||
| 319 | |||
| 320 | ✗ | auto graphicsQueueFamilyResult = vkbDevice.get_queue_index(vkb::QueueType::graphics); | |
| 321 | ✗ | if (!graphicsQueueFamilyResult) { | |
| 322 | ✗ | throw std::runtime_error("Graphic Queue family not found"); | |
| 323 | } | ||
| 324 | ✗ | _graphicsQueueFamily = graphicsQueueFamilyResult.value(); | |
| 325 | // --- | ||
| 326 | |||
| 327 | // initialize the memory allocator | ||
| 328 | ✗ | VmaAllocatorCreateInfo allocatorInfo = {}; | |
| 329 | ✗ | allocatorInfo.physicalDevice = _chosenGPU; | |
| 330 | ✗ | allocatorInfo.device = _device; | |
| 331 | ✗ | allocatorInfo.instance = _instance; | |
| 332 | ✗ | vmaCreateAllocator(&allocatorInfo, &_allocator); | |
| 333 | |||
| 334 | _mainDeletionQueue.push_function([&]() { vmaDestroyAllocator(_allocator); }); | ||
| 335 | |||
| 336 | ✗ | vkGetPhysicalDeviceProperties(_chosenGPU, &_gpuProperties); | |
| 337 | |||
| 338 | ✗ | std::cout << "The gpu has a minimum buffer alignement of " | |
| 339 | ✗ | << _gpuProperties.limits.minUniformBufferOffsetAlignment << std::endl; | |
| 340 | ✗ | } | |
| 341 | |||
| 342 | void VulkanEngine::init_swapchain() { | ||
| 343 | ✗ | vkb::SwapchainBuilder swapchainBuilder{_chosenGPU, _device, _surface}; | |
| 344 | |||
| 345 | vkb::Swapchain vkbSwapchain = swapchainBuilder | ||
| 346 | ✗ | .use_default_format_selection() | |
| 347 | // use vsync present mode | ||
| 348 | ✗ | .set_desired_present_mode(VK_PRESENT_MODE_FIFO_KHR) | |
| 349 | ✗ | .set_desired_extent(_windowExtent.width, _windowExtent.height) | |
| 350 | ✗ | .build() | |
| 351 | ✗ | .value(); | |
| 352 | |||
| 353 | // store swapchain and its related images | ||
| 354 | ✗ | _swapchain = vkbSwapchain.swapchain; | |
| 355 | ✗ | _swapchainImages = vkbSwapchain.get_images().value(); | |
| 356 | ✗ | _swapchainImageViews = vkbSwapchain.get_image_views().value(); | |
| 357 | |||
| 358 | ✗ | _swachainImageFormat = vkbSwapchain.image_format; | |
| 359 | |||
| 360 | ✗ | _mainDeletionQueue.push_function( | |
| 361 | [=]() { vkDestroySwapchainKHR(_device, _swapchain, nullptr); }); | ||
| 362 | |||
| 363 | // depth image size will match the window | ||
| 364 | ✗ | VkExtent3D depthImageExtent = {_windowExtent.width, _windowExtent.height, 1}; | |
| 365 | |||
| 366 | // hardcoding the depth format to 32 bit float | ||
| 367 | ✗ | _depthFormat = VK_FORMAT_D32_SFLOAT; | |
| 368 | |||
| 369 | // the depth image will be a image with the format we selected and Depth Attachment usage flag | ||
| 370 | ✗ | VkImageCreateInfo dimg_info = vkinit::image_create_info( | |
| 371 | _depthFormat, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, depthImageExtent); | ||
| 372 | |||
| 373 | // for the depth image, we want to allocate it from gpu local memory | ||
| 374 | ✗ | VmaAllocationCreateInfo dimg_allocinfo = {}; | |
| 375 | ✗ | dimg_allocinfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; | |
| 376 | ✗ | dimg_allocinfo.requiredFlags = VkMemoryPropertyFlags(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); | |
| 377 | |||
| 378 | // allocate and create the image | ||
| 379 | ✗ | vmaCreateImage(_allocator, | |
| 380 | &dimg_info, | ||
| 381 | &dimg_allocinfo, | ||
| 382 | &_depthImage._image, | ||
| 383 | &_depthImage._allocation, | ||
| 384 | nullptr); | ||
| 385 | |||
| 386 | // build a image-view for the depth image to use for rendering | ||
| 387 | VkImageViewCreateInfo dview_info = | ||
| 388 | ✗ | vkinit::imageview_create_info(_depthFormat, _depthImage._image, VK_IMAGE_ASPECT_DEPTH_BIT); | |
| 389 | ; | ||
| 390 | |||
| 391 | ✗ | VK_CHECK(vkCreateImageView(_device, &dview_info, nullptr, &_depthImageView)); | |
| 392 | |||
| 393 | // add to deletion queues | ||
| 394 | _mainDeletionQueue.push_function([=]() { | ||
| 395 | ✗ | vkDestroyImageView(_device, _depthImageView, nullptr); | |
| 396 | ✗ | vmaDestroyImage(_allocator, _depthImage._image, _depthImage._allocation); | |
| 397 | ✗ | }); | |
| 398 | ✗ | } | |
| 399 | |||
| 400 | void VulkanEngine::init_imgui() { | ||
| 401 | // 1: create descriptor pool for IMGUI | ||
| 402 | // the size of the pool is very oversize, but it's copied from imgui demo itself. | ||
| 403 | ✗ | VkDescriptorPoolSize pool_sizes[] = {{VK_DESCRIPTOR_TYPE_SAMPLER, 1000}, | |
| 404 | {VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1000}, | ||
| 405 | {VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1000}, | ||
| 406 | {VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1000}, | ||
| 407 | {VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1000}, | ||
| 408 | {VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, 1000}, | ||
| 409 | {VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1000}, | ||
| 410 | {VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1000}, | ||
| 411 | {VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1000}, | ||
| 412 | {VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, 1000}, | ||
| 413 | {VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1000}}; | ||
| 414 | |||
| 415 | ✗ | VkDescriptorPoolCreateInfo pool_info = {}; | |
| 416 | ✗ | pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; | |
| 417 | ✗ | pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT; | |
| 418 | ✗ | pool_info.maxSets = 1000; | |
| 419 | ✗ | pool_info.poolSizeCount = uint32_t(std::size(pool_sizes)); | |
| 420 | ✗ | pool_info.pPoolSizes = pool_sizes; | |
| 421 | |||
| 422 | VkDescriptorPool imguiPool; | ||
| 423 | ✗ | VK_CHECK(vkCreateDescriptorPool(_device, &pool_info, nullptr, &imguiPool)); | |
| 424 | |||
| 425 | // 2: initialize imgui library | ||
| 426 | |||
| 427 | // this initializes the core structures of imgui | ||
| 428 | ✗ | ImGui::CreateContext(); | |
| 429 | |||
| 430 | // this initializes imgui for SDL | ||
| 431 | ✗ | ImGui_ImplSDL2_InitForVulkan(_window); | |
| 432 | |||
| 433 | // this initializes imgui for Vulkan | ||
| 434 | ✗ | ImGui_ImplVulkan_InitInfo init_info = {}; | |
| 435 | ✗ | init_info.Instance = _instance; | |
| 436 | ✗ | init_info.PhysicalDevice = _chosenGPU; | |
| 437 | ✗ | init_info.Device = _device; | |
| 438 | ✗ | init_info.Queue = _graphicsQueue; | |
| 439 | ✗ | init_info.DescriptorPool = imguiPool; | |
| 440 | ✗ | init_info.MinImageCount = 3; | |
| 441 | ✗ | init_info.ImageCount = 3; | |
| 442 | ✗ | init_info.MSAASamples = VK_SAMPLE_COUNT_1_BIT; | |
| 443 | |||
| 444 | ✗ | ImGui_ImplVulkan_Init(&init_info, _renderPass); | |
| 445 | |||
| 446 | // execute a gpu command to upload imgui font textures | ||
| 447 | immediate_submit([&](VkCommandBuffer cmd) { ImGui_ImplVulkan_CreateFontsTexture(cmd); }); | ||
| 448 | |||
| 449 | // clear font textures from cpu data | ||
| 450 | ✗ | ImGui_ImplVulkan_DestroyFontUploadObjects(); | |
| 451 | |||
| 452 | // add the destroy the imgui created structures | ||
| 453 | _mainDeletionQueue.push_function([=]() { | ||
| 454 | ✗ | vkDestroyDescriptorPool(_device, imguiPool, nullptr); | |
| 455 | ✗ | ImGui_ImplVulkan_Shutdown(); | |
| 456 | ✗ | }); | |
| 457 | ✗ | } | |
| 458 | |||
| 459 | void VulkanEngine::init_default_renderpass() { | ||
| 460 | // we define an attachment description for our main color image | ||
| 461 | // the attachment is loaded as "clear" when renderpass start | ||
| 462 | // the attachment is stored when renderpass ends | ||
| 463 | // the attachment layout starts as "undefined", and transitions to "Present" so its possible to | ||
| 464 | // display it we dont care about stencil, and dont use multisampling | ||
| 465 | |||
| 466 | ✗ | VkAttachmentDescription color_attachment = {}; | |
| 467 | ✗ | color_attachment.format = _swachainImageFormat; | |
| 468 | ✗ | color_attachment.samples = VK_SAMPLE_COUNT_1_BIT; | |
| 469 | ✗ | color_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; | |
| 470 | ✗ | color_attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; | |
| 471 | ✗ | color_attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; | |
| 472 | ✗ | color_attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; | |
| 473 | ✗ | color_attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; | |
| 474 | ✗ | color_attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; | |
| 475 | |||
| 476 | ✗ | VkAttachmentReference color_attachment_ref = {}; | |
| 477 | ✗ | color_attachment_ref.attachment = 0; | |
| 478 | ✗ | color_attachment_ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; | |
| 479 | |||
| 480 | ✗ | VkAttachmentDescription depth_attachment = {}; | |
| 481 | // Depth attachment | ||
| 482 | ✗ | depth_attachment.flags = 0; | |
| 483 | ✗ | depth_attachment.format = _depthFormat; | |
| 484 | ✗ | depth_attachment.samples = VK_SAMPLE_COUNT_1_BIT; | |
| 485 | ✗ | depth_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; | |
| 486 | ✗ | depth_attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; | |
| 487 | ✗ | depth_attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; | |
| 488 | ✗ | depth_attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; | |
| 489 | ✗ | depth_attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; | |
| 490 | ✗ | depth_attachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; | |
| 491 | |||
| 492 | ✗ | VkAttachmentReference depth_attachment_ref = {}; | |
| 493 | ✗ | depth_attachment_ref.attachment = 1; | |
| 494 | ✗ | depth_attachment_ref.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; | |
| 495 | |||
| 496 | // we are going to create 1 subpass, which is the minimum you can do | ||
| 497 | ✗ | VkSubpassDescription subpass = {}; | |
| 498 | ✗ | subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; | |
| 499 | ✗ | subpass.colorAttachmentCount = 1; | |
| 500 | ✗ | subpass.pColorAttachments = &color_attachment_ref; | |
| 501 | // hook the depth attachment into the subpass | ||
| 502 | ✗ | subpass.pDepthStencilAttachment = &depth_attachment_ref; | |
| 503 | |||
| 504 | // 1 dependency, which is from "outside" into the subpass. And we can read or write color | ||
| 505 | ✗ | VkSubpassDependency dependency = {}; | |
| 506 | ✗ | dependency.srcSubpass = VK_SUBPASS_EXTERNAL; | |
| 507 | ✗ | dependency.dstSubpass = 0; | |
| 508 | ✗ | dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; | |
| 509 | ✗ | dependency.srcAccessMask = 0; | |
| 510 | ✗ | dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; | |
| 511 | ✗ | dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; | |
| 512 | |||
| 513 | // dependency from outside to the subpass, making this subpass dependent on the previous | ||
| 514 | // renderpasses | ||
| 515 | ✗ | VkSubpassDependency depth_dependency = {}; | |
| 516 | ✗ | depth_dependency.srcSubpass = VK_SUBPASS_EXTERNAL; | |
| 517 | ✗ | depth_dependency.dstSubpass = 0; | |
| 518 | ✗ | depth_dependency.srcStageMask = | |
| 519 | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; | ||
| 520 | ✗ | depth_dependency.srcAccessMask = 0; | |
| 521 | ✗ | depth_dependency.dstStageMask = | |
| 522 | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; | ||
| 523 | ✗ | depth_dependency.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; | |
| 524 | |||
| 525 | // array of 2 dependencies, one for color, two for depth | ||
| 526 | ✗ | VkSubpassDependency dependencies[2] = {dependency, depth_dependency}; | |
| 527 | |||
| 528 | // array of 2 attachments, one for the color, and other for depth | ||
| 529 | ✗ | VkAttachmentDescription attachments[2] = {color_attachment, depth_attachment}; | |
| 530 | |||
| 531 | ✗ | VkRenderPassCreateInfo render_pass_info = {}; | |
| 532 | ✗ | render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; | |
| 533 | // 2 attachments from attachment array | ||
| 534 | ✗ | render_pass_info.attachmentCount = 2; | |
| 535 | ✗ | render_pass_info.pAttachments = &attachments[0]; | |
| 536 | ✗ | render_pass_info.subpassCount = 1; | |
| 537 | ✗ | render_pass_info.pSubpasses = &subpass; | |
| 538 | // 2 dependencies from dependency array | ||
| 539 | ✗ | render_pass_info.dependencyCount = 2; | |
| 540 | ✗ | render_pass_info.pDependencies = &dependencies[0]; | |
| 541 | |||
| 542 | ✗ | VK_CHECK(vkCreateRenderPass(_device, &render_pass_info, nullptr, &_renderPass)); | |
| 543 | |||
| 544 | _mainDeletionQueue.push_function([=]() { vkDestroyRenderPass(_device, _renderPass, nullptr); }); | ||
| 545 | ✗ | } | |
| 546 | |||
| 547 | void VulkanEngine::init_framebuffers() { | ||
| 548 | // create the framebuffers for the swapchain images. This will connect the render-pass to the | ||
| 549 | // images for rendering | ||
| 550 | ✗ | VkFramebufferCreateInfo fb_info = vkinit::framebuffer_create_info(_renderPass, _windowExtent); | |
| 551 | |||
| 552 | ✗ | const std::size_t swapchain_imagecount = _swapchainImages.size(); | |
| 553 | ✗ | _framebuffers = std::vector<VkFramebuffer>(swapchain_imagecount); | |
| 554 | |||
| 555 | ✗ | for (std::size_t i = 0; i < swapchain_imagecount; i++) { | |
| 556 | |||
| 557 | VkImageView attachments[2]; | ||
| 558 | ✗ | attachments[0] = _swapchainImageViews[i]; | |
| 559 | ✗ | attachments[1] = _depthImageView; | |
| 560 | |||
| 561 | ✗ | fb_info.pAttachments = attachments; | |
| 562 | ✗ | fb_info.attachmentCount = 2; | |
| 563 | ✗ | VK_CHECK(vkCreateFramebuffer(_device, &fb_info, nullptr, &_framebuffers[i])); | |
| 564 | |||
| 565 | _mainDeletionQueue.push_function([=]() { | ||
| 566 | ✗ | vkDestroyFramebuffer(_device, _framebuffers[i], nullptr); | |
| 567 | ✗ | vkDestroyImageView(_device, _swapchainImageViews[i], nullptr); | |
| 568 | ✗ | }); | |
| 569 | } | ||
| 570 | ✗ | } | |
| 571 | |||
| 572 | void VulkanEngine::init_commands() { | ||
| 573 | // create a command pool for commands submitted to the graphics queue. | ||
| 574 | // we also want the pool to allow for resetting of individual command buffers | ||
| 575 | ✗ | VkCommandPoolCreateInfo commandPoolInfo = vkinit::command_pool_create_info( | |
| 576 | _graphicsQueueFamily, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT); | ||
| 577 | |||
| 578 | ✗ | for (int i = 0; i < FRAME_OVERLAP; i++) { | |
| 579 | |||
| 580 | ✗ | VK_CHECK(vkCreateCommandPool(_device, &commandPoolInfo, nullptr, &_frames[i]._commandPool)); | |
| 581 | |||
| 582 | // allocate the default command buffer that we will use for rendering | ||
| 583 | VkCommandBufferAllocateInfo cmdAllocInfo = | ||
| 584 | ✗ | vkinit::command_buffer_allocate_info(_frames[i]._commandPool, 1); | |
| 585 | |||
| 586 | ✗ | VK_CHECK(vkAllocateCommandBuffers(_device, &cmdAllocInfo, &_frames[i]._mainCommandBuffer)); | |
| 587 | |||
| 588 | ✗ | _mainDeletionQueue.push_function( | |
| 589 | [=]() { vkDestroyCommandPool(_device, _frames[i]._commandPool, nullptr); }); | ||
| 590 | } | ||
| 591 | |||
| 592 | VkCommandPoolCreateInfo uploadCommandPoolInfo = | ||
| 593 | ✗ | vkinit::command_pool_create_info(_graphicsQueueFamily); | |
| 594 | // create pool for upload context | ||
| 595 | ✗ | VK_CHECK(vkCreateCommandPool( | |
| 596 | _device, &uploadCommandPoolInfo, nullptr, &_uploadContext._commandPool)); | ||
| 597 | |||
| 598 | ✗ | _mainDeletionQueue.push_function( | |
| 599 | [=]() { vkDestroyCommandPool(_device, _uploadContext._commandPool, nullptr); }); | ||
| 600 | |||
| 601 | // allocate the default command buffer that we will use for rendering | ||
| 602 | VkCommandBufferAllocateInfo cmdAllocInfo = | ||
| 603 | ✗ | vkinit::command_buffer_allocate_info(_uploadContext._commandPool, 1); | |
| 604 | |||
| 605 | ✗ | VK_CHECK(vkAllocateCommandBuffers(_device, &cmdAllocInfo, &_uploadContext._commandBuffer)); | |
| 606 | ✗ | } | |
| 607 | |||
| 608 | void VulkanEngine::init_sync_structures() { | ||
| 609 | // create syncronization structures | ||
| 610 | // one fence to control when the gpu has finished rendering the frame, | ||
| 611 | // and 2 semaphores to syncronize rendering with swapchain | ||
| 612 | // we want the fence to start signalled so we can wait on it on the first frame | ||
| 613 | ✗ | VkFenceCreateInfo fenceCreateInfo = vkinit::fence_create_info(VK_FENCE_CREATE_SIGNALED_BIT); | |
| 614 | |||
| 615 | ✗ | VkSemaphoreCreateInfo semaphoreCreateInfo = vkinit::semaphore_create_info(); | |
| 616 | |||
| 617 | ✗ | for (int i = 0; i < FRAME_OVERLAP; i++) { | |
| 618 | |||
| 619 | ✗ | VK_CHECK(vkCreateFence(_device, &fenceCreateInfo, nullptr, &_frames[i]._renderFence)); | |
| 620 | |||
| 621 | // enqueue the destruction of the fence | ||
| 622 | ✗ | _mainDeletionQueue.push_function( | |
| 623 | [=]() { vkDestroyFence(_device, _frames[i]._renderFence, nullptr); }); | ||
| 624 | |||
| 625 | ✗ | VK_CHECK(vkCreateSemaphore( | |
| 626 | _device, &semaphoreCreateInfo, nullptr, &_frames[i]._presentSemaphore)); | ||
| 627 | ✗ | VK_CHECK(vkCreateSemaphore( | |
| 628 | _device, &semaphoreCreateInfo, nullptr, &_frames[i]._renderSemaphore)); | ||
| 629 | |||
| 630 | // enqueue the destruction of semaphores | ||
| 631 | _mainDeletionQueue.push_function([=]() { | ||
| 632 | ✗ | vkDestroySemaphore(_device, _frames[i]._presentSemaphore, nullptr); | |
| 633 | ✗ | vkDestroySemaphore(_device, _frames[i]._renderSemaphore, nullptr); | |
| 634 | ✗ | }); | |
| 635 | } | ||
| 636 | |||
| 637 | ✗ | VkFenceCreateInfo uploadFenceCreateInfo = vkinit::fence_create_info(); | |
| 638 | |||
| 639 | ✗ | VK_CHECK(vkCreateFence(_device, &uploadFenceCreateInfo, nullptr, &_uploadContext._uploadFence)); | |
| 640 | ✗ | _mainDeletionQueue.push_function( | |
| 641 | [=]() { vkDestroyFence(_device, _uploadContext._uploadFence, nullptr); }); | ||
| 642 | ✗ | } | |
| 643 | |||
| 644 | void VulkanEngine::init_pipelines() { | ||
| 645 | VkShaderModule colorMeshShader; | ||
| 646 | ✗ | std::string p = "E:/work/lython/src/tide/shaders/"; | |
| 647 | ✗ | p = "E:/work/lython/build/bin/Debug/shaders/"; | |
| 648 | |||
| 649 | ✗ | if (!load_shader_module(p + std::string("default_lit.frag.spv"), &colorMeshShader)) { | |
| 650 | ✗ | std::cout << "Error when building the colored mesh shader" << std::endl; | |
| 651 | } | ||
| 652 | |||
| 653 | VkShaderModule texturedMeshShader; | ||
| 654 | ✗ | if (!load_shader_module(p + std::string("textured_lit.frag.spv"), &texturedMeshShader)) { | |
| 655 | ✗ | std::cout << "Error when building the colored mesh shader" << std::endl; | |
| 656 | } | ||
| 657 | |||
| 658 | VkShaderModule meshVertShader; | ||
| 659 | ✗ | if (!load_shader_module(p + std::string("tri_mesh_ssbo.vert.spv"), &meshVertShader)) { | |
| 660 | ✗ | std::cout << "Error when building the mesh vertex shader module" << std::endl; | |
| 661 | } | ||
| 662 | |||
| 663 | // build the stage-create-info for both vertex and fragment stages. This lets the pipeline know | ||
| 664 | // the shader modules per stage | ||
| 665 | ✗ | PipelineBuilder pipelineBuilder; | |
| 666 | |||
| 667 | ✗ | pipelineBuilder._shaderStages.push_back( | |
| 668 | ✗ | vkinit::pipeline_shader_stage_create_info(VK_SHADER_STAGE_VERTEX_BIT, meshVertShader)); | |
| 669 | |||
| 670 | ✗ | pipelineBuilder._shaderStages.push_back( | |
| 671 | ✗ | vkinit::pipeline_shader_stage_create_info(VK_SHADER_STAGE_FRAGMENT_BIT, colorMeshShader)); | |
| 672 | |||
| 673 | // we start from just the default empty pipeline layout info | ||
| 674 | ✗ | VkPipelineLayoutCreateInfo mesh_pipeline_layout_info = vkinit::pipeline_layout_create_info(); | |
| 675 | |||
| 676 | // setup push constants | ||
| 677 | VkPushConstantRange push_constant; | ||
| 678 | // offset 0 | ||
| 679 | ✗ | push_constant.offset = 0; | |
| 680 | // size of a MeshPushConstant struct | ||
| 681 | ✗ | push_constant.size = sizeof(MeshPushConstants); | |
| 682 | // for the vertex shader | ||
| 683 | ✗ | push_constant.stageFlags = VK_SHADER_STAGE_VERTEX_BIT; | |
| 684 | |||
| 685 | ✗ | mesh_pipeline_layout_info.pPushConstantRanges = &push_constant; | |
| 686 | ✗ | mesh_pipeline_layout_info.pushConstantRangeCount = 1; | |
| 687 | |||
| 688 | ✗ | VkDescriptorSetLayout setLayouts[] = {_globalSetLayout, _objectSetLayout}; | |
| 689 | |||
| 690 | ✗ | mesh_pipeline_layout_info.setLayoutCount = 2; | |
| 691 | ✗ | mesh_pipeline_layout_info.pSetLayouts = setLayouts; | |
| 692 | |||
| 693 | VkPipelineLayout meshPipLayout; | ||
| 694 | ✗ | VK_CHECK(vkCreatePipelineLayout(_device, &mesh_pipeline_layout_info, nullptr, &meshPipLayout)); | |
| 695 | |||
| 696 | // we start from the normal mesh layout | ||
| 697 | ✗ | VkPipelineLayoutCreateInfo textured_pipeline_layout_info = mesh_pipeline_layout_info; | |
| 698 | |||
| 699 | VkDescriptorSetLayout texturedSetLayouts[] = { | ||
| 700 | ✗ | _globalSetLayout, _objectSetLayout, _singleTextureSetLayout}; | |
| 701 | |||
| 702 | ✗ | textured_pipeline_layout_info.setLayoutCount = 3; | |
| 703 | ✗ | textured_pipeline_layout_info.pSetLayouts = texturedSetLayouts; | |
| 704 | |||
| 705 | VkPipelineLayout texturedPipeLayout; | ||
| 706 | ✗ | VK_CHECK(vkCreatePipelineLayout( | |
| 707 | _device, &textured_pipeline_layout_info, nullptr, &texturedPipeLayout)); | ||
| 708 | |||
| 709 | // hook the push constants layout | ||
| 710 | ✗ | pipelineBuilder._pipelineLayout = meshPipLayout; | |
| 711 | |||
| 712 | // vertex input controls how to read vertices from vertex buffers. We arent using it yet | ||
| 713 | ✗ | pipelineBuilder._vertexInputInfo = vkinit::vertex_input_state_create_info(); | |
| 714 | |||
| 715 | // input assembly is the configuration for drawing triangle lists, strips, or individual points. | ||
| 716 | // we are just going to draw triangle list | ||
| 717 | pipelineBuilder._inputAssembly = | ||
| 718 | ✗ | vkinit::input_assembly_create_info(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST); | |
| 719 | |||
| 720 | // build viewport and scissor from the swapchain extents | ||
| 721 | ✗ | pipelineBuilder._viewport.x = 0.0f; | |
| 722 | ✗ | pipelineBuilder._viewport.y = 0.0f; | |
| 723 | ✗ | pipelineBuilder._viewport.width = (float)_windowExtent.width; | |
| 724 | ✗ | pipelineBuilder._viewport.height = (float)_windowExtent.height; | |
| 725 | ✗ | pipelineBuilder._viewport.minDepth = 0.0f; | |
| 726 | ✗ | pipelineBuilder._viewport.maxDepth = 1.0f; | |
| 727 | |||
| 728 | ✗ | pipelineBuilder._scissor.offset = {0, 0}; | |
| 729 | ✗ | pipelineBuilder._scissor.extent = _windowExtent; | |
| 730 | |||
| 731 | // configure the rasterizer to draw filled triangles | ||
| 732 | ✗ | pipelineBuilder._rasterizer = vkinit::rasterization_state_create_info(VK_POLYGON_MODE_FILL); | |
| 733 | |||
| 734 | // we dont use multisampling, so just run the default one | ||
| 735 | ✗ | pipelineBuilder._multisampling = vkinit::multisampling_state_create_info(); | |
| 736 | |||
| 737 | // a single blend attachment with no blending and writing to RGBA | ||
| 738 | ✗ | pipelineBuilder._colorBlendAttachment = vkinit::color_blend_attachment_state(); | |
| 739 | |||
| 740 | // default depthtesting | ||
| 741 | pipelineBuilder._depthStencil = | ||
| 742 | ✗ | vkinit::depth_stencil_create_info(true, true, VK_COMPARE_OP_LESS_OR_EQUAL); | |
| 743 | |||
| 744 | // build the mesh pipeline | ||
| 745 | |||
| 746 | ✗ | VertexInputDescription vertexDescription = Vertex::get_vertex_description(); | |
| 747 | |||
| 748 | // connect the pipeline builder vertex input info to the one we get from Vertex | ||
| 749 | ✗ | pipelineBuilder._vertexInputInfo.pVertexAttributeDescriptions = | |
| 750 | ✗ | vertexDescription.attributes.data(); | |
| 751 | ✗ | pipelineBuilder._vertexInputInfo.vertexAttributeDescriptionCount = | |
| 752 | ✗ | uint32_t(vertexDescription.attributes.size()); | |
| 753 | |||
| 754 | ✗ | pipelineBuilder._vertexInputInfo.pVertexBindingDescriptions = vertexDescription.bindings.data(); | |
| 755 | ✗ | pipelineBuilder._vertexInputInfo.vertexBindingDescriptionCount = | |
| 756 | ✗ | uint32_t(vertexDescription.bindings.size()); | |
| 757 | |||
| 758 | // build the mesh triangle pipeline | ||
| 759 | ✗ | VkPipeline meshPipeline = pipelineBuilder.build_pipeline(_device, _renderPass); | |
| 760 | |||
| 761 | ✗ | create_material(meshPipeline, meshPipLayout, "defaultmesh"); | |
| 762 | |||
| 763 | ✗ | pipelineBuilder._shaderStages.clear(); | |
| 764 | ✗ | pipelineBuilder._shaderStages.push_back( | |
| 765 | ✗ | vkinit::pipeline_shader_stage_create_info(VK_SHADER_STAGE_VERTEX_BIT, meshVertShader)); | |
| 766 | |||
| 767 | ✗ | pipelineBuilder._shaderStages.push_back(vkinit::pipeline_shader_stage_create_info( | |
| 768 | VK_SHADER_STAGE_FRAGMENT_BIT, texturedMeshShader)); | ||
| 769 | |||
| 770 | ✗ | pipelineBuilder._pipelineLayout = texturedPipeLayout; | |
| 771 | ✗ | VkPipeline texPipeline = pipelineBuilder.build_pipeline(_device, _renderPass); | |
| 772 | ✗ | create_material(texPipeline, texturedPipeLayout, "texturedmesh"); | |
| 773 | |||
| 774 | ✗ | vkDestroyShaderModule(_device, meshVertShader, nullptr); | |
| 775 | ✗ | vkDestroyShaderModule(_device, colorMeshShader, nullptr); | |
| 776 | ✗ | vkDestroyShaderModule(_device, texturedMeshShader, nullptr); | |
| 777 | |||
| 778 | _mainDeletionQueue.push_function([=]() { | ||
| 779 | ✗ | vkDestroyPipeline(_device, meshPipeline, nullptr); | |
| 780 | ✗ | vkDestroyPipeline(_device, texPipeline, nullptr); | |
| 781 | |||
| 782 | ✗ | vkDestroyPipelineLayout(_device, meshPipLayout, nullptr); | |
| 783 | ✗ | vkDestroyPipelineLayout(_device, texturedPipeLayout, nullptr); | |
| 784 | ✗ | }); | |
| 785 | ✗ | } | |
| 786 | |||
| 787 | bool VulkanEngine::load_shader_module(std::string const& filePath, | ||
| 788 | VkShaderModule* outShaderModule) { | ||
| 789 | // open the file. With cursor at the end | ||
| 790 | ✗ | std::ifstream file(filePath.c_str(), std::ios::ate | std::ios::binary); | |
| 791 | |||
| 792 | ✗ | if (!file.is_open()) { | |
| 793 | ✗ | std::cout << "FAIL"; | |
| 794 | ✗ | return false; | |
| 795 | } | ||
| 796 | |||
| 797 | // find what the size of the file is by looking up the location of the cursor | ||
| 798 | // because the cursor is at the end, it gives the size directly in bytes | ||
| 799 | ✗ | size_t fileSize = (size_t)file.tellg(); | |
| 800 | |||
| 801 | // spirv expects the buffer to be on uint32, so make sure to reserve a int vector big enough for | ||
| 802 | // the entire file | ||
| 803 | ✗ | std::vector<uint32_t> buffer(fileSize / sizeof(uint32_t)); | |
| 804 | |||
| 805 | // put file cursor at beggining | ||
| 806 | ✗ | file.seekg(0); | |
| 807 | |||
| 808 | // load the entire file into the buffer | ||
| 809 | ✗ | file.read((char*)buffer.data(), fileSize); | |
| 810 | |||
| 811 | // now that the file is loaded into the buffer, we can close it | ||
| 812 | ✗ | file.close(); | |
| 813 | |||
| 814 | // create a new shader module, using the buffer we loaded | ||
| 815 | ✗ | VkShaderModuleCreateInfo createInfo = {}; | |
| 816 | ✗ | createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; | |
| 817 | ✗ | createInfo.pNext = nullptr; | |
| 818 | |||
| 819 | // codeSize has to be in bytes, so multply the ints in the buffer by size of int to know the | ||
| 820 | // real size of the buffer | ||
| 821 | ✗ | createInfo.codeSize = buffer.size() * sizeof(uint32_t); | |
| 822 | ✗ | createInfo.pCode = buffer.data(); | |
| 823 | |||
| 824 | // check that the creation goes well. | ||
| 825 | VkShaderModule shaderModule; | ||
| 826 | ✗ | if (vkCreateShaderModule(_device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) { | |
| 827 | ✗ | return false; | |
| 828 | } | ||
| 829 | ✗ | *outShaderModule = shaderModule; | |
| 830 | ✗ | return true; | |
| 831 | ✗ | } | |
| 832 | |||
| 833 | VkPipeline PipelineBuilder::build_pipeline(VkDevice device, VkRenderPass pass) { | ||
| 834 | // make viewport state from our stored viewport and scissor. | ||
| 835 | // at the moment we wont support multiple viewports or scissors | ||
| 836 | ✗ | VkPipelineViewportStateCreateInfo viewportState = {}; | |
| 837 | ✗ | viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; | |
| 838 | ✗ | viewportState.pNext = nullptr; | |
| 839 | |||
| 840 | ✗ | viewportState.viewportCount = 1; | |
| 841 | ✗ | viewportState.pViewports = &_viewport; | |
| 842 | ✗ | viewportState.scissorCount = 1; | |
| 843 | ✗ | viewportState.pScissors = &_scissor; | |
| 844 | |||
| 845 | // setup dummy color blending. We arent using transparent objects yet | ||
| 846 | // the blending is just "no blend", but we do write to the color attachment | ||
| 847 | ✗ | VkPipelineColorBlendStateCreateInfo colorBlending = {}; | |
| 848 | ✗ | colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; | |
| 849 | ✗ | colorBlending.pNext = nullptr; | |
| 850 | |||
| 851 | ✗ | colorBlending.logicOpEnable = VK_FALSE; | |
| 852 | ✗ | colorBlending.logicOp = VK_LOGIC_OP_COPY; | |
| 853 | ✗ | colorBlending.attachmentCount = 1; | |
| 854 | ✗ | colorBlending.pAttachments = &_colorBlendAttachment; | |
| 855 | |||
| 856 | // build the actual pipeline | ||
| 857 | // we now use all of the info structs we have been writing into into this one to create the | ||
| 858 | // pipeline | ||
| 859 | ✗ | VkGraphicsPipelineCreateInfo pipelineInfo = {}; | |
| 860 | ✗ | pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; | |
| 861 | ✗ | pipelineInfo.pNext = nullptr; | |
| 862 | |||
| 863 | ✗ | pipelineInfo.stageCount = uint32_t(_shaderStages.size()); | |
| 864 | ✗ | pipelineInfo.pStages = _shaderStages.data(); | |
| 865 | ✗ | pipelineInfo.pVertexInputState = &_vertexInputInfo; | |
| 866 | ✗ | pipelineInfo.pInputAssemblyState = &_inputAssembly; | |
| 867 | ✗ | pipelineInfo.pViewportState = &viewportState; | |
| 868 | ✗ | pipelineInfo.pRasterizationState = &_rasterizer; | |
| 869 | ✗ | pipelineInfo.pMultisampleState = &_multisampling; | |
| 870 | ✗ | pipelineInfo.pColorBlendState = &colorBlending; | |
| 871 | ✗ | pipelineInfo.pDepthStencilState = &_depthStencil; | |
| 872 | ✗ | pipelineInfo.layout = _pipelineLayout; | |
| 873 | ✗ | pipelineInfo.renderPass = pass; | |
| 874 | ✗ | pipelineInfo.subpass = 0; | |
| 875 | ✗ | pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; | |
| 876 | |||
| 877 | // its easy to error out on create graphics pipeline, so we handle it a bit better than the | ||
| 878 | // common VK_CHECK case | ||
| 879 | VkPipeline newPipeline; | ||
| 880 | ✗ | if (vkCreateGraphicsPipelines( | |
| 881 | ✗ | device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &newPipeline) != VK_SUCCESS) { | |
| 882 | ✗ | std::cout << "failed to create pipline\n"; | |
| 883 | ✗ | return VK_NULL_HANDLE; // failed to create graphics pipeline | |
| 884 | } else { | ||
| 885 | ✗ | return newPipeline; | |
| 886 | } | ||
| 887 | } | ||
| 888 | |||
| 889 | void VulkanEngine::load_meshes() { | ||
| 890 | ✗ | Mesh triMesh{}; | |
| 891 | // make the array 3 vertices long | ||
| 892 | ✗ | triMesh._vertices.resize(3); | |
| 893 | |||
| 894 | // vertex positions | ||
| 895 | ✗ | triMesh._vertices[0].position = {1.f, 1.f, 0.0f}; | |
| 896 | ✗ | triMesh._vertices[1].position = {-1.f, 1.f, 0.0f}; | |
| 897 | ✗ | triMesh._vertices[2].position = {0.f, -1.f, 0.0f}; | |
| 898 | |||
| 899 | // vertex colors, all green | ||
| 900 | ✗ | triMesh._vertices[0].color = {0.f, 1.f, 0.0f}; // pure green | |
| 901 | ✗ | triMesh._vertices[1].color = {0.f, 1.f, 0.0f}; // pure green | |
| 902 | ✗ | triMesh._vertices[2].color = {0.f, 1.f, 0.0f}; // pure green | |
| 903 | // we dont care about the vertex normals | ||
| 904 | |||
| 905 | // load the monkey | ||
| 906 | ✗ | Mesh monkeyMesh{}; | |
| 907 | ✗ | std::string p = "E:/work/lython/build/bin/Debug/assets/"; | |
| 908 | ✗ | monkeyMesh.load_from_obj((p + std::string("monkey_smooth.obj")).c_str()); | |
| 909 | |||
| 910 | ✗ | Mesh lostEmpire{}; | |
| 911 | ✗ | lostEmpire.load_from_obj((p + std::string("lost_empire.obj")).c_str()); | |
| 912 | |||
| 913 | ✗ | upload_mesh(triMesh); | |
| 914 | ✗ | upload_mesh(monkeyMesh); | |
| 915 | ✗ | upload_mesh(lostEmpire); | |
| 916 | |||
| 917 | ✗ | _meshes["monkey"] = monkeyMesh; | |
| 918 | ✗ | _meshes["triangle"] = triMesh; | |
| 919 | ✗ | _meshes["empire"] = lostEmpire; | |
| 920 | ✗ | } | |
| 921 | |||
| 922 | VkSampler VulkanEngine::new_texture_sampler() { | ||
| 923 | ✗ | VkSamplerCreateInfo samplerInfo{}; | |
| 924 | ✗ | samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; | |
| 925 | ✗ | samplerInfo.magFilter = VK_FILTER_LINEAR; | |
| 926 | ✗ | samplerInfo.minFilter = VK_FILTER_LINEAR; | |
| 927 | |||
| 928 | ✗ | samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; | |
| 929 | ✗ | samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; | |
| 930 | ✗ | samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; | |
| 931 | |||
| 932 | ✗ | samplerInfo.anisotropyEnable = VK_TRUE; | |
| 933 | ✗ | samplerInfo.maxAnisotropy = 16.0f; | |
| 934 | ✗ | samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK; | |
| 935 | ✗ | samplerInfo.unnormalizedCoordinates = VK_FALSE; | |
| 936 | ✗ | samplerInfo.compareEnable = VK_FALSE; | |
| 937 | ✗ | samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS; | |
| 938 | |||
| 939 | ✗ | samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; | |
| 940 | ✗ | samplerInfo.mipLodBias = 0.0f; | |
| 941 | ✗ | samplerInfo.minLod = 0.0f; | |
| 942 | ✗ | samplerInfo.maxLod = 0.0f; | |
| 943 | |||
| 944 | VkSampler textureSampler; | ||
| 945 | ✗ | if (vkCreateSampler(_device, &samplerInfo, nullptr, &textureSampler) != VK_SUCCESS) { | |
| 946 | ✗ | throw std::runtime_error("failed to create texture sampler!"); | |
| 947 | } | ||
| 948 | ✗ | return textureSampler; | |
| 949 | } | ||
| 950 | |||
| 951 | ImTextureID VulkanEngine::load_imtexture(const char* name) { | ||
| 952 | ✗ | Texture tex = load_texture(name); | |
| 953 | ✗ | VkDescriptorSet set = ImGui_ImplVulkan_AddTexture( | |
| 954 | ✗ | get_sampler(), tex.imageView, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); | |
| 955 | |||
| 956 | _mainDeletionQueue.push_function([=]() { ImGui_ImplVulkan_RemoveTexture(set); }); | ||
| 957 | ✗ | _lookup[set] = tex; | |
| 958 | ✗ | return (ImTextureID)set; | |
| 959 | } | ||
| 960 | |||
| 961 | int VulkanEngine::get_height(ImTextureID texture) { | ||
| 962 | ✗ | return _lookup[(VkDescriptorSet)(texture)].height; | |
| 963 | } | ||
| 964 | int VulkanEngine::get_width(ImTextureID texture) { | ||
| 965 | ✗ | return _lookup[(VkDescriptorSet)(texture)].width; | |
| 966 | } | ||
| 967 | |||
| 968 | VkSampler VulkanEngine::get_sampler() { | ||
| 969 | ✗ | if (_defaultSampler == nullptr) { | |
| 970 | ✗ | _defaultSampler = new_texture_sampler(); | |
| 971 | ✗ | _mainDeletionQueue.push_function( | |
| 972 | [=]() { vkDestroySampler(_device, _defaultSampler, nullptr); }); | ||
| 973 | } | ||
| 974 | ✗ | return _defaultSampler; | |
| 975 | } | ||
| 976 | |||
| 977 | Texture VulkanEngine::load_texture(const char* file) { | ||
| 978 | ✗ | Texture tex = _loadedTextures[file]; | |
| 979 | ✗ | if (tex.image._image == nullptr) { | |
| 980 | ✗ | vkutil::load_image_from_file(*this, file, tex); | |
| 981 | ✗ | _loadedTextures[file] = tex; | |
| 982 | |||
| 983 | ✗ | VkImageViewCreateInfo imageinfo = vkinit::imageview_create_info( | |
| 984 | VK_FORMAT_R8G8B8A8_SRGB, tex.image._image, VK_IMAGE_ASPECT_COLOR_BIT); | ||
| 985 | ✗ | vkCreateImageView(_device, &imageinfo, nullptr, &tex.imageView); | |
| 986 | |||
| 987 | ✗ | _mainDeletionQueue.push_function( | |
| 988 | [=]() { vkDestroyImageView(_device, tex.imageView, nullptr); }); | ||
| 989 | } | ||
| 990 | |||
| 991 | ✗ | VkDescriptorSet set = ImGui_ImplVulkan_AddTexture( | |
| 992 | get_sampler(), tex.imageView, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); | ||
| 993 | |||
| 994 | ✗ | return tex; | |
| 995 | } | ||
| 996 | |||
| 997 | void VulkanEngine::load_images() { | ||
| 998 | Texture lostEmpire; | ||
| 999 | |||
| 1000 | ✗ | std::string p = "E:/work/lython/build/bin/Debug/assets/"; | |
| 1001 | ✗ | vkutil::load_image_from_file( | |
| 1002 | ✗ | *this, (p + std::string("lost_empire-RGBA.png")).c_str(), lostEmpire); | |
| 1003 | |||
| 1004 | ✗ | VkImageViewCreateInfo imageinfo = vkinit::imageview_create_info( | |
| 1005 | VK_FORMAT_R8G8B8A8_SRGB, lostEmpire.image._image, VK_IMAGE_ASPECT_COLOR_BIT); | ||
| 1006 | ✗ | vkCreateImageView(_device, &imageinfo, nullptr, &lostEmpire.imageView); | |
| 1007 | |||
| 1008 | ✗ | _mainDeletionQueue.push_function( | |
| 1009 | [=]() { vkDestroyImageView(_device, lostEmpire.imageView, nullptr); }); | ||
| 1010 | |||
| 1011 | ✗ | _loadedTextures["empire_diffuse"] = lostEmpire; | |
| 1012 | ✗ | } | |
| 1013 | |||
| 1014 | void VulkanEngine::upload_mesh(Mesh& mesh) { | ||
| 1015 | ✗ | const size_t bufferSize = mesh._vertices.size() * sizeof(Vertex); | |
| 1016 | // allocate vertex buffer | ||
| 1017 | ✗ | VkBufferCreateInfo stagingBufferInfo = {}; | |
| 1018 | ✗ | stagingBufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; | |
| 1019 | ✗ | stagingBufferInfo.pNext = nullptr; | |
| 1020 | // this is the total size, in bytes, of the buffer we are allocating | ||
| 1021 | ✗ | stagingBufferInfo.size = bufferSize; | |
| 1022 | // this buffer is going to be used as a Vertex Buffer | ||
| 1023 | ✗ | stagingBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; | |
| 1024 | |||
| 1025 | // let the VMA library know that this data should be writeable by CPU, but also readable by GPU | ||
| 1026 | ✗ | VmaAllocationCreateInfo vmaallocInfo = {}; | |
| 1027 | ✗ | vmaallocInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; | |
| 1028 | |||
| 1029 | AllocatedBuffer stagingBuffer; | ||
| 1030 | |||
| 1031 | // allocate the buffer | ||
| 1032 | ✗ | VK_CHECK(vmaCreateBuffer(_allocator, | |
| 1033 | &stagingBufferInfo, | ||
| 1034 | &vmaallocInfo, | ||
| 1035 | &stagingBuffer._buffer, | ||
| 1036 | &stagingBuffer._allocation, | ||
| 1037 | nullptr)); | ||
| 1038 | |||
| 1039 | // copy vertex data | ||
| 1040 | void* data; | ||
| 1041 | ✗ | vmaMapMemory(_allocator, stagingBuffer._allocation, &data); | |
| 1042 | |||
| 1043 | ✗ | memcpy(data, mesh._vertices.data(), mesh._vertices.size() * sizeof(Vertex)); | |
| 1044 | |||
| 1045 | ✗ | vmaUnmapMemory(_allocator, stagingBuffer._allocation); | |
| 1046 | |||
| 1047 | // allocate vertex buffer | ||
| 1048 | ✗ | VkBufferCreateInfo vertexBufferInfo = {}; | |
| 1049 | ✗ | vertexBufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; | |
| 1050 | ✗ | vertexBufferInfo.pNext = nullptr; | |
| 1051 | // this is the total size, in bytes, of the buffer we are allocating | ||
| 1052 | ✗ | vertexBufferInfo.size = bufferSize; | |
| 1053 | // this buffer is going to be used as a Vertex Buffer | ||
| 1054 | ✗ | vertexBufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; | |
| 1055 | |||
| 1056 | // let the VMA library know that this data should be gpu native | ||
| 1057 | ✗ | vmaallocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; | |
| 1058 | |||
| 1059 | // allocate the buffer | ||
| 1060 | ✗ | VK_CHECK(vmaCreateBuffer(_allocator, | |
| 1061 | &vertexBufferInfo, | ||
| 1062 | &vmaallocInfo, | ||
| 1063 | &mesh._vertexBuffer._buffer, | ||
| 1064 | &mesh._vertexBuffer._allocation, | ||
| 1065 | nullptr)); | ||
| 1066 | // add the destruction of triangle mesh buffer to the deletion queue | ||
| 1067 | _mainDeletionQueue.push_function([=]() { | ||
| 1068 | ✗ | vmaDestroyBuffer(_allocator, mesh._vertexBuffer._buffer, mesh._vertexBuffer._allocation); | |
| 1069 | ✗ | }); | |
| 1070 | |||
| 1071 | immediate_submit([=](VkCommandBuffer cmd) { | ||
| 1072 | VkBufferCopy copy; | ||
| 1073 | ✗ | copy.dstOffset = 0; | |
| 1074 | ✗ | copy.srcOffset = 0; | |
| 1075 | ✗ | copy.size = bufferSize; | |
| 1076 | ✗ | vkCmdCopyBuffer(cmd, stagingBuffer._buffer, mesh._vertexBuffer._buffer, 1, ©); | |
| 1077 | ✗ | }); | |
| 1078 | |||
| 1079 | ✗ | vmaDestroyBuffer(_allocator, stagingBuffer._buffer, stagingBuffer._allocation); | |
| 1080 | ✗ | } | |
| 1081 | |||
| 1082 | Material* VulkanEngine::create_material(VkPipeline pipeline, | ||
| 1083 | VkPipelineLayout layout, | ||
| 1084 | const std::string& name) { | ||
| 1085 | ✗ | Material mat; | |
| 1086 | ✗ | mat.pipeline = pipeline; | |
| 1087 | ✗ | mat.pipelineLayout = layout; | |
| 1088 | ✗ | _materials[name] = mat; | |
| 1089 | ✗ | return &_materials[name]; | |
| 1090 | } | ||
| 1091 | |||
| 1092 | Material* VulkanEngine::get_material(const std::string& name) { | ||
| 1093 | // search for the object, and return nullpointer if not found | ||
| 1094 | ✗ | auto it = _materials.find(name); | |
| 1095 | ✗ | if (it == _materials.end()) { | |
| 1096 | ✗ | return nullptr; | |
| 1097 | } else { | ||
| 1098 | ✗ | return &(*it).second; | |
| 1099 | } | ||
| 1100 | } | ||
| 1101 | |||
| 1102 | Mesh* VulkanEngine::get_mesh(const std::string& name) { | ||
| 1103 | ✗ | auto it = _meshes.find(name); | |
| 1104 | ✗ | if (it == _meshes.end()) { | |
| 1105 | ✗ | return nullptr; | |
| 1106 | } else { | ||
| 1107 | ✗ | return &(*it).second; | |
| 1108 | } | ||
| 1109 | } | ||
| 1110 | |||
| 1111 | void VulkanEngine::draw_objects(VkCommandBuffer cmd, RenderObject* first, int count) { | ||
| 1112 | // make a model view matrix for rendering the object | ||
| 1113 | // camera view | ||
| 1114 | ✗ | glm::vec3 camPos = {0.f, -6.f, -10.f}; | |
| 1115 | |||
| 1116 | ✗ | glm::mat4 view = glm::translate(glm::mat4(1.f), camPos); | |
| 1117 | // camera projection | ||
| 1118 | ✗ | glm::mat4 projection = glm::perspective(glm::radians(70.f), 1700.f / 900.f, 0.1f, 200.0f); | |
| 1119 | ✗ | projection[1][1] *= -1; | |
| 1120 | |||
| 1121 | GPUCameraData camData; | ||
| 1122 | ✗ | camData.proj = projection; | |
| 1123 | ✗ | camData.view = view; | |
| 1124 | ✗ | camData.viewproj = projection * view; | |
| 1125 | |||
| 1126 | void* data; | ||
| 1127 | ✗ | vmaMapMemory(_allocator, get_current_frame().cameraBuffer._allocation, &data); | |
| 1128 | |||
| 1129 | ✗ | memcpy(data, &camData, sizeof(GPUCameraData)); | |
| 1130 | |||
| 1131 | ✗ | vmaUnmapMemory(_allocator, get_current_frame().cameraBuffer._allocation); | |
| 1132 | |||
| 1133 | ✗ | float framed = (_frameNumber / 120.f); | |
| 1134 | |||
| 1135 | ✗ | _sceneParameters.ambientColor = {sin(framed), 0, cos(framed), 1}; | |
| 1136 | |||
| 1137 | char* sceneData; | ||
| 1138 | ✗ | vmaMapMemory(_allocator, _sceneParameterBuffer._allocation, (void**)&sceneData); | |
| 1139 | |||
| 1140 | ✗ | std::size_t frameIndex = _frameNumber % FRAME_OVERLAP; | |
| 1141 | |||
| 1142 | ✗ | sceneData += pad_uniform_buffer_size(sizeof(GPUSceneData)) * frameIndex; | |
| 1143 | |||
| 1144 | ✗ | memcpy(sceneData, &_sceneParameters, sizeof(GPUSceneData)); | |
| 1145 | |||
| 1146 | ✗ | vmaUnmapMemory(_allocator, _sceneParameterBuffer._allocation); | |
| 1147 | |||
| 1148 | void* objectData; | ||
| 1149 | ✗ | vmaMapMemory(_allocator, get_current_frame().objectBuffer._allocation, &objectData); | |
| 1150 | |||
| 1151 | ✗ | GPUObjectData* objectSSBO = (GPUObjectData*)objectData; | |
| 1152 | |||
| 1153 | ✗ | for (int i = 0; i < count; i++) { | |
| 1154 | ✗ | RenderObject& object = first[i]; | |
| 1155 | ✗ | objectSSBO[i].modelMatrix = object.transformMatrix; | |
| 1156 | } | ||
| 1157 | |||
| 1158 | ✗ | vmaUnmapMemory(_allocator, get_current_frame().objectBuffer._allocation); | |
| 1159 | |||
| 1160 | ✗ | Mesh* lastMesh = nullptr; | |
| 1161 | ✗ | Material* lastMaterial = nullptr; | |
| 1162 | |||
| 1163 | ✗ | for (int i = 0; i < count; i++) { | |
| 1164 | ✗ | RenderObject& object = first[i]; | |
| 1165 | |||
| 1166 | // only bind the pipeline if it doesnt match with the already bound one | ||
| 1167 | ✗ | if (object.material != lastMaterial) { | |
| 1168 | |||
| 1169 | ✗ | vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, object.material->pipeline); | |
| 1170 | ✗ | lastMaterial = object.material; | |
| 1171 | |||
| 1172 | uint32_t uniform_offset = | ||
| 1173 | ✗ | uint32_t(pad_uniform_buffer_size(sizeof(GPUSceneData)) * frameIndex); | |
| 1174 | ✗ | vkCmdBindDescriptorSets(cmd, | |
| 1175 | VK_PIPELINE_BIND_POINT_GRAPHICS, | ||
| 1176 | ✗ | object.material->pipelineLayout, | |
| 1177 | 0, | ||
| 1178 | 1, | ||
| 1179 | ✗ | &get_current_frame().globalDescriptor, | |
| 1180 | 1, | ||
| 1181 | &uniform_offset); | ||
| 1182 | |||
| 1183 | // object data descriptor | ||
| 1184 | ✗ | vkCmdBindDescriptorSets(cmd, | |
| 1185 | VK_PIPELINE_BIND_POINT_GRAPHICS, | ||
| 1186 | ✗ | object.material->pipelineLayout, | |
| 1187 | 1, | ||
| 1188 | 1, | ||
| 1189 | ✗ | &get_current_frame().objectDescriptor, | |
| 1190 | 0, | ||
| 1191 | nullptr); | ||
| 1192 | |||
| 1193 | ✗ | if (object.material->textureSet != VK_NULL_HANDLE) { | |
| 1194 | // texture descriptor | ||
| 1195 | ✗ | vkCmdBindDescriptorSets(cmd, | |
| 1196 | VK_PIPELINE_BIND_POINT_GRAPHICS, | ||
| 1197 | ✗ | object.material->pipelineLayout, | |
| 1198 | 2, | ||
| 1199 | 1, | ||
| 1200 | ✗ | &object.material->textureSet, | |
| 1201 | 0, | ||
| 1202 | nullptr); | ||
| 1203 | } | ||
| 1204 | } | ||
| 1205 | |||
| 1206 | ✗ | glm::mat4 model = object.transformMatrix; | |
| 1207 | // final render matrix, that we are calculating on the cpu | ||
| 1208 | ✗ | glm::mat4 mesh_matrix = model; | |
| 1209 | |||
| 1210 | MeshPushConstants constants; | ||
| 1211 | ✗ | constants.render_matrix = mesh_matrix; | |
| 1212 | |||
| 1213 | // upload the mesh to the gpu via pushconstants | ||
| 1214 | ✗ | vkCmdPushConstants(cmd, | |
| 1215 | ✗ | object.material->pipelineLayout, | |
| 1216 | VK_SHADER_STAGE_VERTEX_BIT, | ||
| 1217 | 0, | ||
| 1218 | sizeof(MeshPushConstants), | ||
| 1219 | &constants); | ||
| 1220 | |||
| 1221 | // only bind the mesh if its a different one from last bind | ||
| 1222 | ✗ | if (object.mesh != lastMesh) { | |
| 1223 | // bind the mesh vertex buffer with offset 0 | ||
| 1224 | ✗ | VkDeviceSize offset = 0; | |
| 1225 | ✗ | vkCmdBindVertexBuffers(cmd, 0, 1, &object.mesh->_vertexBuffer._buffer, &offset); | |
| 1226 | ✗ | lastMesh = object.mesh; | |
| 1227 | } | ||
| 1228 | // we can now draw | ||
| 1229 | ✗ | vkCmdDraw(cmd, uint32_t(object.mesh->_vertices.size()), 1, 0, uint32_t(i)); | |
| 1230 | } | ||
| 1231 | ✗ | } | |
| 1232 | |||
| 1233 | void VulkanEngine::init_scene() { | ||
| 1234 | RenderObject monkey; | ||
| 1235 | ✗ | monkey.mesh = get_mesh("monkey"); | |
| 1236 | ✗ | monkey.material = get_material("defaultmesh"); | |
| 1237 | ✗ | monkey.transformMatrix = glm::mat4{1.0f}; | |
| 1238 | |||
| 1239 | ✗ | _renderables.push_back(monkey); | |
| 1240 | |||
| 1241 | RenderObject map; | ||
| 1242 | ✗ | map.mesh = get_mesh("empire"); | |
| 1243 | ✗ | map.material = get_material("texturedmesh"); | |
| 1244 | ✗ | map.transformMatrix = glm::translate(glm::vec3{5, -10, 0}); // glm::mat4{ 1.0f }; | |
| 1245 | |||
| 1246 | ✗ | _renderables.push_back(map); | |
| 1247 | |||
| 1248 | ✗ | for (int x = -20; x <= 20; x++) { | |
| 1249 | ✗ | for (int y = -20; y <= 20; y++) { | |
| 1250 | |||
| 1251 | RenderObject tri; | ||
| 1252 | ✗ | tri.mesh = get_mesh("triangle"); | |
| 1253 | ✗ | tri.material = get_material("defaultmesh"); | |
| 1254 | ✗ | glm::mat4 translation = glm::translate(glm::mat4{1.0}, glm::vec3(x, 0, y)); | |
| 1255 | ✗ | glm::mat4 scale = glm::scale(glm::mat4{1.0}, glm::vec3(0.2, 0.2, 0.2)); | |
| 1256 | ✗ | tri.transformMatrix = translation * scale; | |
| 1257 | |||
| 1258 | ✗ | _renderables.push_back(tri); | |
| 1259 | } | ||
| 1260 | } | ||
| 1261 | |||
| 1262 | ✗ | Material* texturedMat = get_material("texturedmesh"); | |
| 1263 | |||
| 1264 | ✗ | VkDescriptorSetAllocateInfo allocInfo = {}; | |
| 1265 | ✗ | allocInfo.pNext = nullptr; | |
| 1266 | ✗ | allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; | |
| 1267 | ✗ | allocInfo.descriptorPool = _descriptorPool; | |
| 1268 | ✗ | allocInfo.descriptorSetCount = 1; | |
| 1269 | ✗ | allocInfo.pSetLayouts = &_singleTextureSetLayout; | |
| 1270 | |||
| 1271 | ✗ | vkAllocateDescriptorSets(_device, &allocInfo, &texturedMat->textureSet); | |
| 1272 | |||
| 1273 | ✗ | VkSamplerCreateInfo samplerInfo = vkinit::sampler_create_info(VK_FILTER_NEAREST); | |
| 1274 | |||
| 1275 | VkSampler blockySampler; | ||
| 1276 | ✗ | vkCreateSampler(_device, &samplerInfo, nullptr, &blockySampler); | |
| 1277 | |||
| 1278 | _mainDeletionQueue.push_function([=]() { vkDestroySampler(_device, blockySampler, nullptr); }); | ||
| 1279 | |||
| 1280 | VkDescriptorImageInfo imageBufferInfo; | ||
| 1281 | ✗ | imageBufferInfo.sampler = blockySampler; | |
| 1282 | ✗ | imageBufferInfo.imageView = _loadedTextures["empire_diffuse"].imageView; | |
| 1283 | ✗ | imageBufferInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; | |
| 1284 | |||
| 1285 | ✗ | VkWriteDescriptorSet texture1 = vkinit::write_descriptor_image( | |
| 1286 | VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, texturedMat->textureSet, &imageBufferInfo, 0); | ||
| 1287 | |||
| 1288 | ✗ | vkUpdateDescriptorSets(_device, 1, &texture1, 0, nullptr); | |
| 1289 | ✗ | } | |
| 1290 | |||
| 1291 | AllocatedBuffer VulkanEngine::create_buffer(size_t allocSize, | ||
| 1292 | VkBufferUsageFlags usage, | ||
| 1293 | VmaMemoryUsage memoryUsage) { | ||
| 1294 | // allocate vertex buffer | ||
| 1295 | ✗ | VkBufferCreateInfo bufferInfo = {}; | |
| 1296 | ✗ | bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; | |
| 1297 | ✗ | bufferInfo.pNext = nullptr; | |
| 1298 | ✗ | bufferInfo.size = allocSize; | |
| 1299 | |||
| 1300 | ✗ | bufferInfo.usage = usage; | |
| 1301 | |||
| 1302 | // let the VMA library know that this data should be writeable by CPU, but also readable by GPU | ||
| 1303 | ✗ | VmaAllocationCreateInfo vmaallocInfo = {}; | |
| 1304 | ✗ | vmaallocInfo.usage = memoryUsage; | |
| 1305 | |||
| 1306 | AllocatedBuffer newBuffer; | ||
| 1307 | |||
| 1308 | // allocate the buffer | ||
| 1309 | ✗ | VK_CHECK(vmaCreateBuffer(_allocator, | |
| 1310 | &bufferInfo, | ||
| 1311 | &vmaallocInfo, | ||
| 1312 | &newBuffer._buffer, | ||
| 1313 | &newBuffer._allocation, | ||
| 1314 | nullptr)); | ||
| 1315 | |||
| 1316 | ✗ | return newBuffer; | |
| 1317 | } | ||
| 1318 | |||
| 1319 | size_t VulkanEngine::pad_uniform_buffer_size(size_t originalSize) { | ||
| 1320 | // Calculate required alignment based on minimum device offset alignment | ||
| 1321 | ✗ | size_t minUboAlignment = _gpuProperties.limits.minUniformBufferOffsetAlignment; | |
| 1322 | ✗ | size_t alignedSize = originalSize; | |
| 1323 | ✗ | if (minUboAlignment > 0) { | |
| 1324 | ✗ | alignedSize = (alignedSize + minUboAlignment - 1) & ~(minUboAlignment - 1); | |
| 1325 | } | ||
| 1326 | ✗ | return alignedSize; | |
| 1327 | } | ||
| 1328 | |||
| 1329 | void VulkanEngine::immediate_submit(std::function<void(VkCommandBuffer cmd)>&& function) { | ||
| 1330 | ✗ | VkCommandBuffer cmd = _uploadContext._commandBuffer; | |
| 1331 | // begin the command buffer recording. We will use this command buffer exactly once, so we want | ||
| 1332 | // to let vulkan know that | ||
| 1333 | VkCommandBufferBeginInfo cmdBeginInfo = | ||
| 1334 | ✗ | vkinit::command_buffer_begin_info(VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT); | |
| 1335 | |||
| 1336 | ✗ | VK_CHECK(vkBeginCommandBuffer(cmd, &cmdBeginInfo)); | |
| 1337 | |||
| 1338 | ✗ | function(cmd); | |
| 1339 | |||
| 1340 | ✗ | VK_CHECK(vkEndCommandBuffer(cmd)); | |
| 1341 | |||
| 1342 | ✗ | VkSubmitInfo submit = vkinit::submit_info(&cmd); | |
| 1343 | |||
| 1344 | // submit command buffer to the queue and execute it. | ||
| 1345 | // _renderFence will now block until the graphic commands finish execution | ||
| 1346 | ✗ | VK_CHECK(vkQueueSubmit(_graphicsQueue, 1, &submit, _uploadContext._uploadFence)); | |
| 1347 | |||
| 1348 | ✗ | vkWaitForFences(_device, 1, &_uploadContext._uploadFence, true, 9999999999); | |
| 1349 | ✗ | vkResetFences(_device, 1, &_uploadContext._uploadFence); | |
| 1350 | |||
| 1351 | ✗ | vkResetCommandPool(_device, _uploadContext._commandPool, 0); | |
| 1352 | ✗ | } | |
| 1353 | |||
| 1354 | void VulkanEngine::init_descriptors() { | ||
| 1355 | |||
| 1356 | // create a descriptor pool that will hold 10 uniform buffers | ||
| 1357 | std::vector<VkDescriptorPoolSize> sizes = {{VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 10}, | ||
| 1358 | {VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 10}, | ||
| 1359 | {VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 10}, | ||
| 1360 | ✗ | {VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 10}}; | |
| 1361 | |||
| 1362 | ✗ | VkDescriptorPoolCreateInfo pool_info = {}; | |
| 1363 | ✗ | pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; | |
| 1364 | ✗ | pool_info.flags = 0; | |
| 1365 | ✗ | pool_info.maxSets = 10; | |
| 1366 | ✗ | pool_info.poolSizeCount = (uint32_t)sizes.size(); | |
| 1367 | ✗ | pool_info.pPoolSizes = sizes.data(); | |
| 1368 | |||
| 1369 | ✗ | vkCreateDescriptorPool(_device, &pool_info, nullptr, &_descriptorPool); | |
| 1370 | |||
| 1371 | ✗ | VkDescriptorSetLayoutBinding cameraBind = vkinit::descriptorset_layout_binding( | |
| 1372 | VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0); | ||
| 1373 | ✗ | VkDescriptorSetLayoutBinding sceneBind = vkinit::descriptorset_layout_binding( | |
| 1374 | VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, | ||
| 1375 | VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, | ||
| 1376 | 1); | ||
| 1377 | |||
| 1378 | ✗ | VkDescriptorSetLayoutBinding bindings[] = {cameraBind, sceneBind}; | |
| 1379 | |||
| 1380 | ✗ | VkDescriptorSetLayoutCreateInfo setinfo = {}; | |
| 1381 | ✗ | setinfo.bindingCount = 2; | |
| 1382 | ✗ | setinfo.flags = 0; | |
| 1383 | ✗ | setinfo.pNext = nullptr; | |
| 1384 | ✗ | setinfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; | |
| 1385 | ✗ | setinfo.pBindings = bindings; | |
| 1386 | |||
| 1387 | ✗ | vkCreateDescriptorSetLayout(_device, &setinfo, nullptr, &_globalSetLayout); | |
| 1388 | |||
| 1389 | ✗ | VkDescriptorSetLayoutBinding objectBind = vkinit::descriptorset_layout_binding( | |
| 1390 | VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0); | ||
| 1391 | |||
| 1392 | ✗ | VkDescriptorSetLayoutCreateInfo set2info = {}; | |
| 1393 | ✗ | set2info.bindingCount = 1; | |
| 1394 | ✗ | set2info.flags = 0; | |
| 1395 | ✗ | set2info.pNext = nullptr; | |
| 1396 | ✗ | set2info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; | |
| 1397 | ✗ | set2info.pBindings = &objectBind; | |
| 1398 | |||
| 1399 | ✗ | vkCreateDescriptorSetLayout(_device, &set2info, nullptr, &_objectSetLayout); | |
| 1400 | |||
| 1401 | ✗ | VkDescriptorSetLayoutBinding textureBind = vkinit::descriptorset_layout_binding( | |
| 1402 | VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0); | ||
| 1403 | |||
| 1404 | ✗ | VkDescriptorSetLayoutCreateInfo set3info = {}; | |
| 1405 | ✗ | set3info.bindingCount = 1; | |
| 1406 | ✗ | set3info.flags = 0; | |
| 1407 | ✗ | set3info.pNext = nullptr; | |
| 1408 | ✗ | set3info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; | |
| 1409 | ✗ | set3info.pBindings = &textureBind; | |
| 1410 | |||
| 1411 | ✗ | vkCreateDescriptorSetLayout(_device, &set3info, nullptr, &_singleTextureSetLayout); | |
| 1412 | |||
| 1413 | const size_t sceneParamBufferSize = | ||
| 1414 | ✗ | FRAME_OVERLAP * pad_uniform_buffer_size(sizeof(GPUSceneData)); | |
| 1415 | |||
| 1416 | ✗ | _sceneParameterBuffer = create_buffer( | |
| 1417 | sceneParamBufferSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VMA_MEMORY_USAGE_CPU_TO_GPU); | ||
| 1418 | |||
| 1419 | ✗ | for (int i = 0; i < FRAME_OVERLAP; i++) { | |
| 1420 | ✗ | _frames[i].cameraBuffer = create_buffer( | |
| 1421 | sizeof(GPUCameraData), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VMA_MEMORY_USAGE_CPU_TO_GPU); | ||
| 1422 | |||
| 1423 | ✗ | const int MAX_OBJECTS = 10000; | |
| 1424 | ✗ | _frames[i].objectBuffer = create_buffer(sizeof(GPUObjectData) * MAX_OBJECTS, | |
| 1425 | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, | ||
| 1426 | VMA_MEMORY_USAGE_CPU_TO_GPU); | ||
| 1427 | |||
| 1428 | ✗ | VkDescriptorSetAllocateInfo allocInfo = {}; | |
| 1429 | ✗ | allocInfo.pNext = nullptr; | |
| 1430 | ✗ | allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; | |
| 1431 | ✗ | allocInfo.descriptorPool = _descriptorPool; | |
| 1432 | ✗ | allocInfo.descriptorSetCount = 1; | |
| 1433 | ✗ | allocInfo.pSetLayouts = &_globalSetLayout; | |
| 1434 | |||
| 1435 | ✗ | vkAllocateDescriptorSets(_device, &allocInfo, &_frames[i].globalDescriptor); | |
| 1436 | |||
| 1437 | ✗ | VkDescriptorSetAllocateInfo objectSetAlloc = {}; | |
| 1438 | ✗ | objectSetAlloc.pNext = nullptr; | |
| 1439 | ✗ | objectSetAlloc.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; | |
| 1440 | ✗ | objectSetAlloc.descriptorPool = _descriptorPool; | |
| 1441 | ✗ | objectSetAlloc.descriptorSetCount = 1; | |
| 1442 | ✗ | objectSetAlloc.pSetLayouts = &_objectSetLayout; | |
| 1443 | |||
| 1444 | ✗ | vkAllocateDescriptorSets(_device, &objectSetAlloc, &_frames[i].objectDescriptor); | |
| 1445 | |||
| 1446 | VkDescriptorBufferInfo cameraInfo; | ||
| 1447 | ✗ | cameraInfo.buffer = _frames[i].cameraBuffer._buffer; | |
| 1448 | ✗ | cameraInfo.offset = 0; | |
| 1449 | ✗ | cameraInfo.range = sizeof(GPUCameraData); | |
| 1450 | |||
| 1451 | VkDescriptorBufferInfo sceneInfo; | ||
| 1452 | ✗ | sceneInfo.buffer = _sceneParameterBuffer._buffer; | |
| 1453 | ✗ | sceneInfo.offset = 0; | |
| 1454 | ✗ | sceneInfo.range = sizeof(GPUSceneData); | |
| 1455 | |||
| 1456 | VkDescriptorBufferInfo objectBufferInfo; | ||
| 1457 | ✗ | objectBufferInfo.buffer = _frames[i].objectBuffer._buffer; | |
| 1458 | ✗ | objectBufferInfo.offset = 0; | |
| 1459 | ✗ | objectBufferInfo.range = sizeof(GPUObjectData) * MAX_OBJECTS; | |
| 1460 | |||
| 1461 | ✗ | VkWriteDescriptorSet cameraWrite = vkinit::write_descriptor_buffer( | |
| 1462 | VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, _frames[i].globalDescriptor, &cameraInfo, 0); | ||
| 1463 | |||
| 1464 | ✗ | VkWriteDescriptorSet sceneWrite = vkinit::write_descriptor_buffer( | |
| 1465 | VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, _frames[i].globalDescriptor, &sceneInfo, 1); | ||
| 1466 | |||
| 1467 | ✗ | VkWriteDescriptorSet objectWrite = vkinit::write_descriptor_buffer( | |
| 1468 | VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, _frames[i].objectDescriptor, &objectBufferInfo, 0); | ||
| 1469 | |||
| 1470 | ✗ | VkWriteDescriptorSet setWrites[] = {cameraWrite, sceneWrite, objectWrite}; | |
| 1471 | |||
| 1472 | ✗ | vkUpdateDescriptorSets(_device, 3, setWrites, 0, nullptr); | |
| 1473 | } | ||
| 1474 | |||
| 1475 | _mainDeletionQueue.push_function([&]() { | ||
| 1476 | ✗ | vmaDestroyBuffer( | |
| 1477 | ✗ | _allocator, _sceneParameterBuffer._buffer, _sceneParameterBuffer._allocation); | |
| 1478 | |||
| 1479 | ✗ | vkDestroyDescriptorSetLayout(_device, _objectSetLayout, nullptr); | |
| 1480 | ✗ | vkDestroyDescriptorSetLayout(_device, _globalSetLayout, nullptr); | |
| 1481 | ✗ | vkDestroyDescriptorSetLayout(_device, _singleTextureSetLayout, nullptr); | |
| 1482 | |||
| 1483 | ✗ | vkDestroyDescriptorPool(_device, _descriptorPool, nullptr); | |
| 1484 | |||
| 1485 | ✗ | for (int i = 0; i < FRAME_OVERLAP; i++) { | |
| 1486 | ✗ | vmaDestroyBuffer( | |
| 1487 | _allocator, _frames[i].cameraBuffer._buffer, _frames[i].cameraBuffer._allocation); | ||
| 1488 | |||
| 1489 | ✗ | vmaDestroyBuffer( | |
| 1490 | _allocator, _frames[i].objectBuffer._buffer, _frames[i].objectBuffer._allocation); | ||
| 1491 | } | ||
| 1492 | ✗ | }); | |
| 1493 | ✗ | } | |
| 1494 |