| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // | ||
| 2 | // Copyright (c) 2017-2020 Advanced Micro Devices, Inc. All rights reserved. | ||
| 3 | // | ||
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy | ||
| 5 | // of this software and associated documentation files (the "Software"), to deal | ||
| 6 | // in the Software without restriction, including without limitation the rights | ||
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
| 8 | // copies of the Software, and to permit persons to whom the Software is | ||
| 9 | // furnished to do so, subject to the following conditions: | ||
| 10 | // | ||
| 11 | // The above copyright notice and this permission notice shall be included in | ||
| 12 | // all copies or substantial portions of the Software. | ||
| 13 | // | ||
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
| 20 | // THE SOFTWARE. | ||
| 21 | // | ||
| 22 | |||
| 23 | #ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H | ||
| 24 | #define AMD_VULKAN_MEMORY_ALLOCATOR_H | ||
| 25 | |||
| 26 | /** \mainpage Vulkan Memory Allocator | ||
| 27 | |||
| 28 | <b>Version 3.0.0-development</b> (2020-03-23) | ||
| 29 | |||
| 30 | Copyright (c) 2017-2020 Advanced Micro Devices, Inc. All rights reserved. \n | ||
| 31 | License: MIT | ||
| 32 | |||
| 33 | Documentation of all members: vk_mem_alloc.h | ||
| 34 | |||
| 35 | \section main_table_of_contents Table of contents | ||
| 36 | |||
| 37 | - <b>User guide</b> | ||
| 38 | - \subpage quick_start | ||
| 39 | - [Project setup](@ref quick_start_project_setup) | ||
| 40 | - [Initialization](@ref quick_start_initialization) | ||
| 41 | - [Resource allocation](@ref quick_start_resource_allocation) | ||
| 42 | - \subpage choosing_memory_type | ||
| 43 | - [Usage](@ref choosing_memory_type_usage) | ||
| 44 | - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags) | ||
| 45 | - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types) | ||
| 46 | - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools) | ||
| 47 | - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations) | ||
| 48 | - \subpage memory_mapping | ||
| 49 | - [Mapping functions](@ref memory_mapping_mapping_functions) | ||
| 50 | - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory) | ||
| 51 | - [Cache flush and invalidate](@ref memory_mapping_cache_control) | ||
| 52 | - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable) | ||
| 53 | - \subpage staying_within_budget | ||
| 54 | - [Querying for budget](@ref staying_within_budget_querying_for_budget) | ||
| 55 | - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage) | ||
| 56 | - \subpage custom_memory_pools | ||
| 57 | - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex) | ||
| 58 | - [Linear allocation algorithm](@ref linear_algorithm) | ||
| 59 | - [Free-at-once](@ref linear_algorithm_free_at_once) | ||
| 60 | - [Stack](@ref linear_algorithm_stack) | ||
| 61 | - [Double stack](@ref linear_algorithm_double_stack) | ||
| 62 | - [Ring buffer](@ref linear_algorithm_ring_buffer) | ||
| 63 | - [Buddy allocation algorithm](@ref buddy_algorithm) | ||
| 64 | - \subpage defragmentation | ||
| 65 | - [Defragmenting CPU memory](@ref defragmentation_cpu) | ||
| 66 | - [Defragmenting GPU memory](@ref defragmentation_gpu) | ||
| 67 | - [Additional notes](@ref defragmentation_additional_notes) | ||
| 68 | - [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm) | ||
| 69 | - \subpage lost_allocations | ||
| 70 | - \subpage statistics | ||
| 71 | - [Numeric statistics](@ref statistics_numeric_statistics) | ||
| 72 | - [JSON dump](@ref statistics_json_dump) | ||
| 73 | - \subpage allocation_annotation | ||
| 74 | - [Allocation user data](@ref allocation_user_data) | ||
| 75 | - [Allocation names](@ref allocation_names) | ||
| 76 | - \subpage debugging_memory_usage | ||
| 77 | - [Memory initialization](@ref debugging_memory_usage_initialization) | ||
| 78 | - [Margins](@ref debugging_memory_usage_margins) | ||
| 79 | - [Corruption detection](@ref debugging_memory_usage_corruption_detection) | ||
| 80 | - \subpage record_and_replay | ||
| 81 | - \subpage usage_patterns | ||
| 82 | - [Common mistakes](@ref usage_patterns_common_mistakes) | ||
| 83 | - [Simple patterns](@ref usage_patterns_simple) | ||
| 84 | - [Advanced patterns](@ref usage_patterns_advanced) | ||
| 85 | - \subpage configuration | ||
| 86 | - [Pointers to Vulkan functions](@ref config_Vulkan_functions) | ||
| 87 | - [Custom host memory allocator](@ref custom_memory_allocator) | ||
| 88 | - [Device memory allocation callbacks](@ref allocation_callbacks) | ||
| 89 | - [Device heap memory limit](@ref heap_memory_limit) | ||
| 90 | - \subpage vk_khr_dedicated_allocation | ||
| 91 | - \subpage enabling_buffer_device_address | ||
| 92 | - \subpage vk_amd_device_coherent_memory | ||
| 93 | - \subpage general_considerations | ||
| 94 | - [Thread safety](@ref general_considerations_thread_safety) | ||
| 95 | - [Validation layer warnings](@ref general_considerations_validation_layer_warnings) | ||
| 96 | - [Allocation algorithm](@ref general_considerations_allocation_algorithm) | ||
| 97 | - [Features not supported](@ref general_considerations_features_not_supported) | ||
| 98 | |||
| 99 | \section main_see_also See also | ||
| 100 | |||
| 101 | - [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/) | ||
| 102 | - [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator) | ||
| 103 | |||
| 104 | |||
| 105 | |||
| 106 | |||
| 107 | \page quick_start Quick start | ||
| 108 | |||
| 109 | \section quick_start_project_setup Project setup | ||
| 110 | |||
| 111 | Vulkan Memory Allocator comes in form of a "stb-style" single header file. | ||
| 112 | You don't need to build it as a separate library project. | ||
| 113 | You can add this file directly to your project and submit it to code repository next to your other source files. | ||
| 114 | |||
| 115 | "Single header" doesn't mean that everything is contained in C/C++ declarations, | ||
| 116 | like it tends to be in case of inline functions or C++ templates. | ||
| 117 | It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro. | ||
| 118 | If you don't do it properly, you will get linker errors. | ||
| 119 | |||
| 120 | To do it properly: | ||
| 121 | |||
| 122 | -# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library. | ||
| 123 | This includes declarations of all members of the library. | ||
| 124 | -# In exacly one CPP file define following macro before this include. | ||
| 125 | It enables also internal definitions. | ||
| 126 | |||
| 127 | \code | ||
| 128 | #define VMA_IMPLEMENTATION | ||
| 129 | #include "vk_mem_alloc.h" | ||
| 130 | \endcode | ||
| 131 | |||
| 132 | It may be a good idea to create dedicated CPP file just for this purpose. | ||
| 133 | |||
| 134 | Note on language: This library is written in C++, but has C-compatible interface. | ||
| 135 | Thus you can include and use vk_mem_alloc.h in C or C++ code, but full | ||
| 136 | implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C. | ||
| 137 | |||
| 138 | Please note that this library includes header `<vulkan/vulkan.h>`, which in turn | ||
| 139 | includes `<windows.h>` on Windows. If you need some specific macros defined | ||
| 140 | before including these headers (like `WIN32_LEAN_AND_MEAN` or | ||
| 141 | `WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define | ||
| 142 | them before every `#include` of this library. | ||
| 143 | |||
| 144 | |||
| 145 | \section quick_start_initialization Initialization | ||
| 146 | |||
| 147 | At program startup: | ||
| 148 | |||
| 149 | -# Initialize Vulkan to have `VkPhysicalDevice`, `VkDevice` and `VkInstance` object. | ||
| 150 | -# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by | ||
| 151 | calling vmaCreateAllocator(). | ||
| 152 | |||
| 153 | \code | ||
| 154 | VmaAllocatorCreateInfo allocatorInfo = {}; | ||
| 155 | allocatorInfo.physicalDevice = physicalDevice; | ||
| 156 | allocatorInfo.device = device; | ||
| 157 | allocatorInfo.instance = instance; | ||
| 158 | |||
| 159 | VmaAllocator allocator; | ||
| 160 | vmaCreateAllocator(&allocatorInfo, &allocator); | ||
| 161 | \endcode | ||
| 162 | |||
| 163 | \section quick_start_resource_allocation Resource allocation | ||
| 164 | |||
| 165 | When you want to create a buffer or image: | ||
| 166 | |||
| 167 | -# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure. | ||
| 168 | -# Fill VmaAllocationCreateInfo structure. | ||
| 169 | -# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory | ||
| 170 | already allocated and bound to it. | ||
| 171 | |||
| 172 | \code | ||
| 173 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; | ||
| 174 | bufferInfo.size = 65536; | ||
| 175 | bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; | ||
| 176 | |||
| 177 | VmaAllocationCreateInfo allocInfo = {}; | ||
| 178 | allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; | ||
| 179 | |||
| 180 | VkBuffer buffer; | ||
| 181 | VmaAllocation allocation; | ||
| 182 | vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); | ||
| 183 | \endcode | ||
| 184 | |||
| 185 | Don't forget to destroy your objects when no longer needed: | ||
| 186 | |||
| 187 | \code | ||
| 188 | vmaDestroyBuffer(allocator, buffer, allocation); | ||
| 189 | vmaDestroyAllocator(allocator); | ||
| 190 | \endcode | ||
| 191 | |||
| 192 | |||
| 193 | \page choosing_memory_type Choosing memory type | ||
| 194 | |||
| 195 | Physical devices in Vulkan support various combinations of memory heaps and | ||
| 196 | types. Help with choosing correct and optimal memory type for your specific | ||
| 197 | resource is one of the key features of this library. You can use it by filling | ||
| 198 | appropriate members of VmaAllocationCreateInfo structure, as described below. | ||
| 199 | You can also combine multiple methods. | ||
| 200 | |||
| 201 | -# If you just want to find memory type index that meets your requirements, you | ||
| 202 | can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(), | ||
| 203 | vmaFindMemoryTypeIndexForImageInfo(). | ||
| 204 | -# If you want to allocate a region of device memory without association with any | ||
| 205 | specific image or buffer, you can use function vmaAllocateMemory(). Usage of | ||
| 206 | this function is not recommended and usually not needed. | ||
| 207 | vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once, | ||
| 208 | which may be useful for sparse binding. | ||
| 209 | -# If you already have a buffer or an image created, you want to allocate memory | ||
| 210 | for it and then you will bind it yourself, you can use function | ||
| 211 | vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(). | ||
| 212 | For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory() | ||
| 213 | or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2(). | ||
| 214 | -# If you want to create a buffer or an image, allocate memory for it and bind | ||
| 215 | them together, all in one call, you can use function vmaCreateBuffer(), | ||
| 216 | vmaCreateImage(). This is the easiest and recommended way to use this library. | ||
| 217 | |||
| 218 | When using 3. or 4., the library internally queries Vulkan for memory types | ||
| 219 | supported for that buffer or image (function `vkGetBufferMemoryRequirements()`) | ||
| 220 | and uses only one of these types. | ||
| 221 | |||
| 222 | If no memory type can be found that meets all the requirements, these functions | ||
| 223 | return `VK_ERROR_FEATURE_NOT_PRESENT`. | ||
| 224 | |||
| 225 | You can leave VmaAllocationCreateInfo structure completely filled with zeros. | ||
| 226 | It means no requirements are specified for memory type. | ||
| 227 | It is valid, although not very useful. | ||
| 228 | |||
| 229 | \section choosing_memory_type_usage Usage | ||
| 230 | |||
| 231 | The easiest way to specify memory requirements is to fill member | ||
| 232 | VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage. | ||
| 233 | It defines high level, common usage types. | ||
| 234 | For more details, see description of this enum. | ||
| 235 | |||
| 236 | For example, if you want to create a uniform buffer that will be filled using | ||
| 237 | transfer only once or infrequently and used for rendering every frame, you can | ||
| 238 | do it using following code: | ||
| 239 | |||
| 240 | \code | ||
| 241 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; | ||
| 242 | bufferInfo.size = 65536; | ||
| 243 | bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; | ||
| 244 | |||
| 245 | VmaAllocationCreateInfo allocInfo = {}; | ||
| 246 | allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; | ||
| 247 | |||
| 248 | VkBuffer buffer; | ||
| 249 | VmaAllocation allocation; | ||
| 250 | vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); | ||
| 251 | \endcode | ||
| 252 | |||
| 253 | \section choosing_memory_type_required_preferred_flags Required and preferred flags | ||
| 254 | |||
| 255 | You can specify more detailed requirements by filling members | ||
| 256 | VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags | ||
| 257 | with a combination of bits from enum `VkMemoryPropertyFlags`. For example, | ||
| 258 | if you want to create a buffer that will be persistently mapped on host (so it | ||
| 259 | must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`, | ||
| 260 | use following code: | ||
| 261 | |||
| 262 | \code | ||
| 263 | VmaAllocationCreateInfo allocInfo = {}; | ||
| 264 | allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; | ||
| 265 | allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; | ||
| 266 | allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; | ||
| 267 | |||
| 268 | VkBuffer buffer; | ||
| 269 | VmaAllocation allocation; | ||
| 270 | vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); | ||
| 271 | \endcode | ||
| 272 | |||
| 273 | A memory type is chosen that has all the required flags and as many preferred | ||
| 274 | flags set as possible. | ||
| 275 | |||
| 276 | If you use VmaAllocationCreateInfo::usage, it is just internally converted to | ||
| 277 | a set of required and preferred flags. | ||
| 278 | |||
| 279 | \section choosing_memory_type_explicit_memory_types Explicit memory types | ||
| 280 | |||
| 281 | If you inspected memory types available on the physical device and you have | ||
| 282 | a preference for memory types that you want to use, you can fill member | ||
| 283 | VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set | ||
| 284 | means that a memory type with that index is allowed to be used for the | ||
| 285 | allocation. Special value 0, just like `UINT32_MAX`, means there are no | ||
| 286 | restrictions to memory type index. | ||
| 287 | |||
| 288 | Please note that this member is NOT just a memory type index. | ||
| 289 | Still you can use it to choose just one, specific memory type. | ||
| 290 | For example, if you already determined that your buffer should be created in | ||
| 291 | memory type 2, use following code: | ||
| 292 | |||
| 293 | \code | ||
| 294 | uint32_t memoryTypeIndex = 2; | ||
| 295 | |||
| 296 | VmaAllocationCreateInfo allocInfo = {}; | ||
| 297 | allocInfo.memoryTypeBits = 1u << memoryTypeIndex; | ||
| 298 | |||
| 299 | VkBuffer buffer; | ||
| 300 | VmaAllocation allocation; | ||
| 301 | vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); | ||
| 302 | \endcode | ||
| 303 | |||
| 304 | \section choosing_memory_type_custom_memory_pools Custom memory pools | ||
| 305 | |||
| 306 | If you allocate from custom memory pool, all the ways of specifying memory | ||
| 307 | requirements described above are not applicable and the aforementioned members | ||
| 308 | of VmaAllocationCreateInfo structure are ignored. Memory type is selected | ||
| 309 | explicitly when creating the pool and then used to make all the allocations from | ||
| 310 | that pool. For further details, see \ref custom_memory_pools. | ||
| 311 | |||
| 312 | \section choosing_memory_type_dedicated_allocations Dedicated allocations | ||
| 313 | |||
| 314 | Memory for allocations is reserved out of larger block of `VkDeviceMemory` | ||
| 315 | allocated from Vulkan internally. That's the main feature of this whole library. | ||
| 316 | You can still request a separate memory block to be created for an allocation, | ||
| 317 | just like you would do in a trivial solution without using any allocator. | ||
| 318 | In that case, a buffer or image is always bound to that memory at offset 0. | ||
| 319 | This is called a "dedicated allocation". | ||
| 320 | You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. | ||
| 321 | The library can also internally decide to use dedicated allocation in some cases, e.g.: | ||
| 322 | |||
| 323 | - When the size of the allocation is large. | ||
| 324 | - When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled | ||
| 325 | and it reports that dedicated allocation is required or recommended for the resource. | ||
| 326 | - When allocation of next big memory block fails due to not enough device memory, | ||
| 327 | but allocation with the exact requested size succeeds. | ||
| 328 | |||
| 329 | |||
| 330 | \page memory_mapping Memory mapping | ||
| 331 | |||
| 332 | To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`, | ||
| 333 | to be able to read from it or write to it in CPU code. | ||
| 334 | Mapping is possible only of memory allocated from a memory type that has | ||
| 335 | `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. | ||
| 336 | Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose. | ||
| 337 | You can use them directly with memory allocated by this library, | ||
| 338 | but it is not recommended because of following issue: | ||
| 339 | Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed. | ||
| 340 | This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan. | ||
| 341 | Because of this, Vulkan Memory Allocator provides following facilities: | ||
| 342 | |||
| 343 | \section memory_mapping_mapping_functions Mapping functions | ||
| 344 | |||
| 345 | The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory(). | ||
| 346 | They are safer and more convenient to use than standard Vulkan functions. | ||
| 347 | You can map an allocation multiple times simultaneously - mapping is reference-counted internally. | ||
| 348 | You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block. | ||
| 349 | The way it's implemented is that the library always maps entire memory block, not just region of the allocation. | ||
| 350 | For further details, see description of vmaMapMemory() function. | ||
| 351 | Example: | ||
| 352 | |||
| 353 | \code | ||
| 354 | // Having these objects initialized: | ||
| 355 | |||
| 356 | struct ConstantBuffer | ||
| 357 | { | ||
| 358 | ... | ||
| 359 | }; | ||
| 360 | ConstantBuffer constantBufferData; | ||
| 361 | |||
| 362 | VmaAllocator allocator; | ||
| 363 | VkBuffer constantBuffer; | ||
| 364 | VmaAllocation constantBufferAllocation; | ||
| 365 | |||
| 366 | // You can map and fill your buffer using following code: | ||
| 367 | |||
| 368 | void* mappedData; | ||
| 369 | vmaMapMemory(allocator, constantBufferAllocation, &mappedData); | ||
| 370 | memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); | ||
| 371 | vmaUnmapMemory(allocator, constantBufferAllocation); | ||
| 372 | \endcode | ||
| 373 | |||
| 374 | When mapping, you may see a warning from Vulkan validation layer similar to this one: | ||
| 375 | |||
| 376 | <i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i> | ||
| 377 | |||
| 378 | It happens because the library maps entire `VkDeviceMemory` block, where different | ||
| 379 | types of images and buffers may end up together, especially on GPUs with unified memory like Intel. | ||
| 380 | You can safely ignore it if you are sure you access only memory of the intended | ||
| 381 | object that you wanted to map. | ||
| 382 | |||
| 383 | |||
| 384 | \section memory_mapping_persistently_mapped_memory Persistently mapped memory | ||
| 385 | |||
| 386 | Kepping your memory persistently mapped is generally OK in Vulkan. | ||
| 387 | You don't need to unmap it before using its data on the GPU. | ||
| 388 | The library provides a special feature designed for that: | ||
| 389 | Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in | ||
| 390 | VmaAllocationCreateInfo::flags stay mapped all the time, | ||
| 391 | so you can just access CPU pointer to it any time | ||
| 392 | without a need to call any "map" or "unmap" function. | ||
| 393 | Example: | ||
| 394 | |||
| 395 | \code | ||
| 396 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; | ||
| 397 | bufCreateInfo.size = sizeof(ConstantBuffer); | ||
| 398 | bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; | ||
| 399 | |||
| 400 | VmaAllocationCreateInfo allocCreateInfo = {}; | ||
| 401 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; | ||
| 402 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; | ||
| 403 | |||
| 404 | VkBuffer buf; | ||
| 405 | VmaAllocation alloc; | ||
| 406 | VmaAllocationInfo allocInfo; | ||
| 407 | vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); | ||
| 408 | |||
| 409 | // Buffer is already mapped. You can access its memory. | ||
| 410 | memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); | ||
| 411 | \endcode | ||
| 412 | |||
| 413 | There are some exceptions though, when you should consider mapping memory only for a short period of time: | ||
| 414 | |||
| 415 | - When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2), | ||
| 416 | device is discrete AMD GPU, | ||
| 417 | and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory | ||
| 418 | (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU), | ||
| 419 | then whenever a memory block allocated from this memory type stays mapped | ||
| 420 | for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this | ||
| 421 | block is migrated by WDDM to system RAM, which degrades performance. It doesn't | ||
| 422 | matter if that particular memory block is actually used by the command buffer | ||
| 423 | being submitted. | ||
| 424 | - On Mac/MoltenVK there is a known bug - [Issue #175](https://github.com/KhronosGroup/MoltenVK/issues/175) | ||
| 425 | which requires unmapping before GPU can see updated texture. | ||
| 426 | - Keeping many large memory blocks mapped may impact performance or stability of some debugging tools. | ||
| 427 | |||
| 428 | \section memory_mapping_cache_control Cache flush and invalidate | ||
| 429 | |||
| 430 | Memory in Vulkan doesn't need to be unmapped before using it on GPU, | ||
| 431 | but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set, | ||
| 432 | you need to manually **invalidate** cache before reading of mapped pointer | ||
| 433 | and **flush** cache after writing to mapped pointer. | ||
| 434 | Map/unmap operations don't do that automatically. | ||
| 435 | Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`, | ||
| 436 | `vkInvalidateMappedMemoryRanges()`, but this library provides more convenient | ||
| 437 | functions that refer to given allocation object: vmaFlushAllocation(), | ||
| 438 | vmaInvalidateAllocation(), | ||
| 439 | or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations(). | ||
| 440 | |||
| 441 | Regions of memory specified for flush/invalidate must be aligned to | ||
| 442 | `VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library. | ||
| 443 | In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations | ||
| 444 | within blocks are aligned to this value, so their offsets are always multiply of | ||
| 445 | `nonCoherentAtomSize` and two different allocations never share same "line" of this size. | ||
| 446 | |||
| 447 | Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`. | ||
| 448 | |||
| 449 | Also, Windows drivers from all 3 **PC** GPU vendors (AMD, Intel, NVIDIA) | ||
| 450 | currently provide `HOST_COHERENT` flag on all memory types that are | ||
| 451 | `HOST_VISIBLE`, so on this platform you may not need to bother. | ||
| 452 | |||
| 453 | \section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable | ||
| 454 | |||
| 455 | It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping) | ||
| 456 | despite it wasn't explicitly requested. | ||
| 457 | For example, application may work on integrated graphics with unified memory (like Intel) or | ||
| 458 | allocation from video memory might have failed, so the library chose system memory as fallback. | ||
| 459 | |||
| 460 | You can detect this case and map such allocation to access its memory on CPU directly, | ||
| 461 | instead of launching a transfer operation. | ||
| 462 | In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(), | ||
| 463 | and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type. | ||
| 464 | |||
| 465 | \code | ||
| 466 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; | ||
| 467 | bufCreateInfo.size = sizeof(ConstantBuffer); | ||
| 468 | bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; | ||
| 469 | |||
| 470 | VmaAllocationCreateInfo allocCreateInfo = {}; | ||
| 471 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; | ||
| 472 | allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; | ||
| 473 | |||
| 474 | VkBuffer buf; | ||
| 475 | VmaAllocation alloc; | ||
| 476 | VmaAllocationInfo allocInfo; | ||
| 477 | vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); | ||
| 478 | |||
| 479 | VkMemoryPropertyFlags memFlags; | ||
| 480 | vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags); | ||
| 481 | if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) | ||
| 482 | { | ||
| 483 | // Allocation ended up in mappable memory. You can map it and access it directly. | ||
| 484 | void* mappedData; | ||
| 485 | vmaMapMemory(allocator, alloc, &mappedData); | ||
| 486 | memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); | ||
| 487 | vmaUnmapMemory(allocator, alloc); | ||
| 488 | } | ||
| 489 | else | ||
| 490 | { | ||
| 491 | // Allocation ended up in non-mappable memory. | ||
| 492 | // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. | ||
| 493 | } | ||
| 494 | \endcode | ||
| 495 | |||
| 496 | You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations | ||
| 497 | that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY). | ||
| 498 | If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly. | ||
| 499 | If not, the flag is just ignored. | ||
| 500 | Example: | ||
| 501 | |||
| 502 | \code | ||
| 503 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; | ||
| 504 | bufCreateInfo.size = sizeof(ConstantBuffer); | ||
| 505 | bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; | ||
| 506 | |||
| 507 | VmaAllocationCreateInfo allocCreateInfo = {}; | ||
| 508 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; | ||
| 509 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; | ||
| 510 | |||
| 511 | VkBuffer buf; | ||
| 512 | VmaAllocation alloc; | ||
| 513 | VmaAllocationInfo allocInfo; | ||
| 514 | vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); | ||
| 515 | |||
| 516 | if(allocInfo.pUserData != nullptr) | ||
| 517 | { | ||
| 518 | // Allocation ended up in mappable memory. | ||
| 519 | // It's persistently mapped. You can access it directly. | ||
| 520 | memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); | ||
| 521 | } | ||
| 522 | else | ||
| 523 | { | ||
| 524 | // Allocation ended up in non-mappable memory. | ||
| 525 | // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. | ||
| 526 | } | ||
| 527 | \endcode | ||
| 528 | |||
| 529 | |||
| 530 | \page staying_within_budget Staying within budget | ||
| 531 | |||
| 532 | When developing a graphics-intensive game or program, it is important to avoid allocating | ||
| 533 | more GPU memory than it's physically available. When the memory is over-committed, | ||
| 534 | various bad things can happen, depending on the specific GPU, graphics driver, and | ||
| 535 | operating system: | ||
| 536 | |||
| 537 | - It may just work without any problems. | ||
| 538 | - The application may slow down because some memory blocks are moved to system RAM | ||
| 539 | and the GPU has to access them through PCI Express bus. | ||
| 540 | - A new allocation may take very long time to complete, even few seconds, and possibly | ||
| 541 | freeze entire system. | ||
| 542 | - The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. | ||
| 543 | - It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST` | ||
| 544 | returned somewhere later. | ||
| 545 | |||
| 546 | \section staying_within_budget_querying_for_budget Querying for budget | ||
| 547 | |||
| 548 | To query for current memory usage and available budget, use function vmaGetBudget(). | ||
| 549 | Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap. | ||
| 550 | |||
| 551 | Please note that this function returns different information and works faster than | ||
| 552 | vmaCalculateStats(). vmaGetBudget() can be called every frame or even before every | ||
| 553 | allocation, while vmaCalculateStats() is intended to be used rarely, | ||
| 554 | only to obtain statistical information, e.g. for debugging purposes. | ||
| 555 | |||
| 556 | It is recommended to use <b>VK_EXT_memory_budget</b> device extension to obtain information | ||
| 557 | about the budget from Vulkan device. VMA is able to use this extension automatically. | ||
| 558 | When not enabled, the allocator behaves same way, but then it estimates current usage | ||
| 559 | and available budget based on its internal information and Vulkan memory heap sizes, | ||
| 560 | which may be less precise. In order to use this extension: | ||
| 561 | |||
| 562 | 1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2 | ||
| 563 | required by it are available and enable them. Please note that the first is a device | ||
| 564 | extension and the second is instance extension! | ||
| 565 | 2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object. | ||
| 566 | 3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from | ||
| 567 | Vulkan inside of it to avoid overhead of querying it with every allocation. | ||
| 568 | |||
| 569 | \section staying_within_budget_controlling_memory_usage Controlling memory usage | ||
| 570 | |||
| 571 | There are many ways in which you can try to stay within the budget. | ||
| 572 | |||
| 573 | First, when making new allocation requires allocating a new memory block, the library | ||
| 574 | tries not to exceed the budget automatically. If a block with default recommended size | ||
| 575 | (e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even | ||
| 576 | dedicated memory for just this resource. | ||
| 577 | |||
| 578 | If the size of the requested resource plus current memory usage is more than the | ||
| 579 | budget, by default the library still tries to create it, leaving it to the Vulkan | ||
| 580 | implementation whether the allocation succeeds or fails. You can change this behavior | ||
| 581 | by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is | ||
| 582 | not made if it would exceed the budget or if the budget is already exceeded. | ||
| 583 | Some other allocations become lost instead to make room for it, if the mechanism of | ||
| 584 | [lost allocations](@ref lost_allocations) is used. | ||
| 585 | If that is not possible, the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. | ||
| 586 | Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag | ||
| 587 | when creating resources that are not essential for the application (e.g. the texture | ||
| 588 | of a specific object) and not to pass it when creating critically important resources | ||
| 589 | (e.g. render targets). | ||
| 590 | |||
| 591 | Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure | ||
| 592 | a new allocation is created only when it fits inside one of the existing memory blocks. | ||
| 593 | If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. | ||
| 594 | This also ensures that the function call is very fast because it never goes to Vulkan | ||
| 595 | to obtain a new block. | ||
| 596 | |||
| 597 | Please note that creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount | ||
| 598 | set to more than 0 will try to allocate memory blocks without checking whether they | ||
| 599 | fit within budget. | ||
| 600 | |||
| 601 | |||
| 602 | \page custom_memory_pools Custom memory pools | ||
| 603 | |||
| 604 | A memory pool contains a number of `VkDeviceMemory` blocks. | ||
| 605 | The library automatically creates and manages default pool for each memory type available on the device. | ||
| 606 | Default memory pool automatically grows in size. | ||
| 607 | Size of allocated blocks is also variable and managed automatically. | ||
| 608 | |||
| 609 | You can create custom pool and allocate memory out of it. | ||
| 610 | It can be useful if you want to: | ||
| 611 | |||
| 612 | - Keep certain kind of allocations separate from others. | ||
| 613 | - Enforce particular, fixed size of Vulkan memory blocks. | ||
| 614 | - Limit maximum amount of Vulkan memory allocated for that pool. | ||
| 615 | - Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool. | ||
| 616 | |||
| 617 | To use custom memory pools: | ||
| 618 | |||
| 619 | -# Fill VmaPoolCreateInfo structure. | ||
| 620 | -# Call vmaCreatePool() to obtain #VmaPool handle. | ||
| 621 | -# When making an allocation, set VmaAllocationCreateInfo::pool to this handle. | ||
| 622 | You don't need to specify any other parameters of this structure, like `usage`. | ||
| 623 | |||
| 624 | Example: | ||
| 625 | |||
| 626 | \code | ||
| 627 | // Create a pool that can have at most 2 blocks, 128 MiB each. | ||
| 628 | VmaPoolCreateInfo poolCreateInfo = {}; | ||
| 629 | poolCreateInfo.memoryTypeIndex = ... | ||
| 630 | poolCreateInfo.blockSize = 128ull * 1024 * 1024; | ||
| 631 | poolCreateInfo.maxBlockCount = 2; | ||
| 632 | |||
| 633 | VmaPool pool; | ||
| 634 | vmaCreatePool(allocator, &poolCreateInfo, &pool); | ||
| 635 | |||
| 636 | // Allocate a buffer out of it. | ||
| 637 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; | ||
| 638 | bufCreateInfo.size = 1024; | ||
| 639 | bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; | ||
| 640 | |||
| 641 | VmaAllocationCreateInfo allocCreateInfo = {}; | ||
| 642 | allocCreateInfo.pool = pool; | ||
| 643 | |||
| 644 | VkBuffer buf; | ||
| 645 | VmaAllocation alloc; | ||
| 646 | VmaAllocationInfo allocInfo; | ||
| 647 | vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); | ||
| 648 | \endcode | ||
| 649 | |||
| 650 | You have to free all allocations made from this pool before destroying it. | ||
| 651 | |||
| 652 | \code | ||
| 653 | vmaDestroyBuffer(allocator, buf, alloc); | ||
| 654 | vmaDestroyPool(allocator, pool); | ||
| 655 | \endcode | ||
| 656 | |||
| 657 | \section custom_memory_pools_MemTypeIndex Choosing memory type index | ||
| 658 | |||
| 659 | When creating a pool, you must explicitly specify memory type index. | ||
| 660 | To find the one suitable for your buffers or images, you can use helper functions | ||
| 661 | vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(). | ||
| 662 | You need to provide structures with example parameters of buffers or images | ||
| 663 | that you are going to create in that pool. | ||
| 664 | |||
| 665 | \code | ||
| 666 | VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; | ||
| 667 | exampleBufCreateInfo.size = 1024; // Whatever. | ||
| 668 | exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed. | ||
| 669 | |||
| 670 | VmaAllocationCreateInfo allocCreateInfo = {}; | ||
| 671 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed. | ||
| 672 | |||
| 673 | uint32_t memTypeIndex; | ||
| 674 | vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex); | ||
| 675 | |||
| 676 | VmaPoolCreateInfo poolCreateInfo = {}; | ||
| 677 | poolCreateInfo.memoryTypeIndex = memTypeIndex; | ||
| 678 | // ... | ||
| 679 | \endcode | ||
| 680 | |||
| 681 | When creating buffers/images allocated in that pool, provide following parameters: | ||
| 682 | |||
| 683 | - `VkBufferCreateInfo`: Prefer to pass same parameters as above. | ||
| 684 | Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior. | ||
| 685 | Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers | ||
| 686 | or the other way around. | ||
| 687 | - VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member. | ||
| 688 | Other members are ignored anyway. | ||
| 689 | |||
| 690 | \section linear_algorithm Linear allocation algorithm | ||
| 691 | |||
| 692 | Each Vulkan memory block managed by this library has accompanying metadata that | ||
| 693 | keeps track of used and unused regions. By default, the metadata structure and | ||
| 694 | algorithm tries to find best place for new allocations among free regions to | ||
| 695 | optimize memory usage. This way you can allocate and free objects in any order. | ||
| 696 | |||
| 697 |  | ||
| 698 | |||
| 699 | Sometimes there is a need to use simpler, linear allocation algorithm. You can | ||
| 700 | create custom pool that uses such algorithm by adding flag | ||
| 701 | #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating | ||
| 702 | #VmaPool object. Then an alternative metadata management is used. It always | ||
| 703 | creates new allocations after last one and doesn't reuse free regions after | ||
| 704 | allocations freed in the middle. It results in better allocation performance and | ||
| 705 | less memory consumed by metadata. | ||
| 706 | |||
| 707 |  | ||
| 708 | |||
| 709 | With this one flag, you can create a custom pool that can be used in many ways: | ||
| 710 | free-at-once, stack, double stack, and ring buffer. See below for details. | ||
| 711 | |||
| 712 | \subsection linear_algorithm_free_at_once Free-at-once | ||
| 713 | |||
| 714 | In a pool that uses linear algorithm, you still need to free all the allocations | ||
| 715 | individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free | ||
| 716 | them in any order. New allocations are always made after last one - free space | ||
| 717 | in the middle is not reused. However, when you release all the allocation and | ||
| 718 | the pool becomes empty, allocation starts from the beginning again. This way you | ||
| 719 | can use linear algorithm to speed up creation of allocations that you are going | ||
| 720 | to release all at once. | ||
| 721 | |||
| 722 |  | ||
| 723 | |||
| 724 | This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount | ||
| 725 | value that allows multiple memory blocks. | ||
| 726 | |||
| 727 | \subsection linear_algorithm_stack Stack | ||
| 728 | |||
| 729 | When you free an allocation that was created last, its space can be reused. | ||
| 730 | Thanks to this, if you always release allocations in the order opposite to their | ||
| 731 | creation (LIFO - Last In First Out), you can achieve behavior of a stack. | ||
| 732 | |||
| 733 |  | ||
| 734 | |||
| 735 | This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount | ||
| 736 | value that allows multiple memory blocks. | ||
| 737 | |||
| 738 | \subsection linear_algorithm_double_stack Double stack | ||
| 739 | |||
| 740 | The space reserved by a custom pool with linear algorithm may be used by two | ||
| 741 | stacks: | ||
| 742 | |||
| 743 | - First, default one, growing up from offset 0. | ||
| 744 | - Second, "upper" one, growing down from the end towards lower offsets. | ||
| 745 | |||
| 746 | To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT | ||
| 747 | to VmaAllocationCreateInfo::flags. | ||
| 748 | |||
| 749 |  | ||
| 750 | |||
| 751 | Double stack is available only in pools with one memory block - | ||
| 752 | VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. | ||
| 753 | |||
| 754 | When the two stacks' ends meet so there is not enough space between them for a | ||
| 755 | new allocation, such allocation fails with usual | ||
| 756 | `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. | ||
| 757 | |||
| 758 | \subsection linear_algorithm_ring_buffer Ring buffer | ||
| 759 | |||
| 760 | When you free some allocations from the beginning and there is not enough free space | ||
| 761 | for a new one at the end of a pool, allocator's "cursor" wraps around to the | ||
| 762 | beginning and starts allocation there. Thanks to this, if you always release | ||
| 763 | allocations in the same order as you created them (FIFO - First In First Out), | ||
| 764 | you can achieve behavior of a ring buffer / queue. | ||
| 765 | |||
| 766 |  | ||
| 767 | |||
| 768 | Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer. | ||
| 769 | If there is not enough free space for a new allocation, but existing allocations | ||
| 770 | from the front of the queue can become lost, they become lost and the allocation | ||
| 771 | succeeds. | ||
| 772 | |||
| 773 |  | ||
| 774 | |||
| 775 | Ring buffer is available only in pools with one memory block - | ||
| 776 | VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. | ||
| 777 | |||
| 778 | \section buddy_algorithm Buddy allocation algorithm | ||
| 779 | |||
| 780 | There is another allocation algorithm that can be used with custom pools, called | ||
| 781 | "buddy". Its internal data structure is based on a tree of blocks, each having | ||
| 782 | size that is a power of two and a half of its parent's size. When you want to | ||
| 783 | allocate memory of certain size, a free node in the tree is located. If it's too | ||
| 784 | large, it is recursively split into two halves (called "buddies"). However, if | ||
| 785 | requested allocation size is not a power of two, the size of a tree node is | ||
| 786 | aligned up to the nearest power of two and the remaining space is wasted. When | ||
| 787 | two buddy nodes become free, they are merged back into one larger node. | ||
| 788 | |||
| 789 |  | ||
| 790 | |||
| 791 | The advantage of buddy allocation algorithm over default algorithm is faster | ||
| 792 | allocation and deallocation, as well as smaller external fragmentation. The | ||
| 793 | disadvantage is more wasted space (internal fragmentation). | ||
| 794 | |||
| 795 | For more information, please read ["Buddy memory allocation" on Wikipedia](https://en.wikipedia.org/wiki/Buddy_memory_allocation) | ||
| 796 | or other sources that describe this concept in general. | ||
| 797 | |||
| 798 | To use buddy allocation algorithm with a custom pool, add flag | ||
| 799 | #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating | ||
| 800 | #VmaPool object. | ||
| 801 | |||
| 802 | Several limitations apply to pools that use buddy algorithm: | ||
| 803 | |||
| 804 | - It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two. | ||
| 805 | Otherwise, only largest power of two smaller than the size is used for | ||
| 806 | allocations. The remaining space always stays unused. | ||
| 807 | - [Margins](@ref debugging_memory_usage_margins) and | ||
| 808 | [corruption detection](@ref debugging_memory_usage_corruption_detection) | ||
| 809 | don't work in such pools. | ||
| 810 | - [Lost allocations](@ref lost_allocations) don't work in such pools. You can | ||
| 811 | use them, but they never become lost. Support may be added in the future. | ||
| 812 | - [Defragmentation](@ref defragmentation) doesn't work with allocations made from | ||
| 813 | such pool. | ||
| 814 | |||
| 815 | \page defragmentation Defragmentation | ||
| 816 | |||
| 817 | Interleaved allocations and deallocations of many objects of varying size can | ||
| 818 | cause fragmentation over time, which can lead to a situation where the library is unable | ||
| 819 | to find a continuous range of free memory for a new allocation despite there is | ||
| 820 | enough free space, just scattered across many small free ranges between existing | ||
| 821 | allocations. | ||
| 822 | |||
| 823 | To mitigate this problem, you can use defragmentation feature: | ||
| 824 | structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd(). | ||
| 825 | Given set of allocations, | ||
| 826 | this function can move them to compact used memory, ensure more continuous free | ||
| 827 | space and possibly also free some `VkDeviceMemory` blocks. | ||
| 828 | |||
| 829 | What the defragmentation does is: | ||
| 830 | |||
| 831 | - Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset. | ||
| 832 | After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or | ||
| 833 | VmaAllocationInfo::offset changes. You must query them again using | ||
| 834 | vmaGetAllocationInfo() if you need them. | ||
| 835 | - Moves actual data in memory. | ||
| 836 | |||
| 837 | What it doesn't do, so you need to do it yourself: | ||
| 838 | |||
| 839 | - Recreate buffers and images that were bound to allocations that were defragmented and | ||
| 840 | bind them with their new places in memory. | ||
| 841 | You must use `vkDestroyBuffer()`, `vkDestroyImage()`, | ||
| 842 | `vkCreateBuffer()`, `vkCreateImage()`, vmaBindBufferMemory(), vmaBindImageMemory() | ||
| 843 | for that purpose and NOT vmaDestroyBuffer(), | ||
| 844 | vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to | ||
| 845 | destroy or create allocation objects! | ||
| 846 | - Recreate views and update descriptors that point to these buffers and images. | ||
| 847 | |||
| 848 | \section defragmentation_cpu Defragmenting CPU memory | ||
| 849 | |||
| 850 | Following example demonstrates how you can run defragmentation on CPU. | ||
| 851 | Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented. | ||
| 852 | Others are ignored. | ||
| 853 | |||
| 854 | The way it works is: | ||
| 855 | |||
| 856 | - It temporarily maps entire memory blocks when necessary. | ||
| 857 | - It moves data using `memmove()` function. | ||
| 858 | |||
| 859 | \code | ||
| 860 | // Given following variables already initialized: | ||
| 861 | VkDevice device; | ||
| 862 | VmaAllocator allocator; | ||
| 863 | std::vector<VkBuffer> buffers; | ||
| 864 | std::vector<VmaAllocation> allocations; | ||
| 865 | |||
| 866 | |||
| 867 | const uint32_t allocCount = (uint32_t)allocations.size(); | ||
| 868 | std::vector<VkBool32> allocationsChanged(allocCount); | ||
| 869 | |||
| 870 | VmaDefragmentationInfo2 defragInfo = {}; | ||
| 871 | defragInfo.allocationCount = allocCount; | ||
| 872 | defragInfo.pAllocations = allocations.data(); | ||
| 873 | defragInfo.pAllocationsChanged = allocationsChanged.data(); | ||
| 874 | defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit. | ||
| 875 | defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit. | ||
| 876 | |||
| 877 | VmaDefragmentationContext defragCtx; | ||
| 878 | vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); | ||
| 879 | vmaDefragmentationEnd(allocator, defragCtx); | ||
| 880 | |||
| 881 | for(uint32_t i = 0; i < allocCount; ++i) | ||
| 882 | { | ||
| 883 | if(allocationsChanged[i]) | ||
| 884 | { | ||
| 885 | // Destroy buffer that is immutably bound to memory region which is no longer valid. | ||
| 886 | vkDestroyBuffer(device, buffers[i], nullptr); | ||
| 887 | |||
| 888 | // Create new buffer with same parameters. | ||
| 889 | VkBufferCreateInfo bufferInfo = ...; | ||
| 890 | vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); | ||
| 891 | |||
| 892 | // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. | ||
| 893 | |||
| 894 | // Bind new buffer to new memory region. Data contained in it is already moved. | ||
| 895 | VmaAllocationInfo allocInfo; | ||
| 896 | vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); | ||
| 897 | vmaBindBufferMemory(allocator, allocations[i], buffers[i]); | ||
| 898 | } | ||
| 899 | } | ||
| 900 | \endcode | ||
| 901 | |||
| 902 | Setting VmaDefragmentationInfo2::pAllocationsChanged is optional. | ||
| 903 | This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index | ||
| 904 | has been modified during defragmentation. | ||
| 905 | You can pass null, but you then need to query every allocation passed to defragmentation | ||
| 906 | for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it. | ||
| 907 | |||
| 908 | If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools), | ||
| 909 | you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools | ||
| 910 | instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations | ||
| 911 | to defragment all allocations in given pools. | ||
| 912 | You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case. | ||
| 913 | You can also combine both methods. | ||
| 914 | |||
| 915 | \section defragmentation_gpu Defragmenting GPU memory | ||
| 916 | |||
| 917 | It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`. | ||
| 918 | To do that, you need to pass a command buffer that meets requirements as described in | ||
| 919 | VmaDefragmentationInfo2::commandBuffer. The way it works is: | ||
| 920 | |||
| 921 | - It creates temporary buffers and binds them to entire memory blocks when necessary. | ||
| 922 | - It issues `vkCmdCopyBuffer()` to passed command buffer. | ||
| 923 | |||
| 924 | Example: | ||
| 925 | |||
| 926 | \code | ||
| 927 | // Given following variables already initialized: | ||
| 928 | VkDevice device; | ||
| 929 | VmaAllocator allocator; | ||
| 930 | VkCommandBuffer commandBuffer; | ||
| 931 | std::vector<VkBuffer> buffers; | ||
| 932 | std::vector<VmaAllocation> allocations; | ||
| 933 | |||
| 934 | |||
| 935 | const uint32_t allocCount = (uint32_t)allocations.size(); | ||
| 936 | std::vector<VkBool32> allocationsChanged(allocCount); | ||
| 937 | |||
| 938 | VkCommandBufferBeginInfo cmdBufBeginInfo = ...; | ||
| 939 | vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo); | ||
| 940 | |||
| 941 | VmaDefragmentationInfo2 defragInfo = {}; | ||
| 942 | defragInfo.allocationCount = allocCount; | ||
| 943 | defragInfo.pAllocations = allocations.data(); | ||
| 944 | defragInfo.pAllocationsChanged = allocationsChanged.data(); | ||
| 945 | defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it's "GPU" this time. | ||
| 946 | defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it's "GPU" this time. | ||
| 947 | defragInfo.commandBuffer = commandBuffer; | ||
| 948 | |||
| 949 | VmaDefragmentationContext defragCtx; | ||
| 950 | vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); | ||
| 951 | |||
| 952 | vkEndCommandBuffer(commandBuffer); | ||
| 953 | |||
| 954 | // Submit commandBuffer. | ||
| 955 | // Wait for a fence that ensures commandBuffer execution finished. | ||
| 956 | |||
| 957 | vmaDefragmentationEnd(allocator, defragCtx); | ||
| 958 | |||
| 959 | for(uint32_t i = 0; i < allocCount; ++i) | ||
| 960 | { | ||
| 961 | if(allocationsChanged[i]) | ||
| 962 | { | ||
| 963 | // Destroy buffer that is immutably bound to memory region which is no longer valid. | ||
| 964 | vkDestroyBuffer(device, buffers[i], nullptr); | ||
| 965 | |||
| 966 | // Create new buffer with same parameters. | ||
| 967 | VkBufferCreateInfo bufferInfo = ...; | ||
| 968 | vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); | ||
| 969 | |||
| 970 | // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. | ||
| 971 | |||
| 972 | // Bind new buffer to new memory region. Data contained in it is already moved. | ||
| 973 | VmaAllocationInfo allocInfo; | ||
| 974 | vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); | ||
| 975 | vmaBindBufferMemory(allocator, allocations[i], buffers[i]); | ||
| 976 | } | ||
| 977 | } | ||
| 978 | \endcode | ||
| 979 | |||
| 980 | You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters. | ||
| 981 | The library automatically chooses best method to defragment each memory pool. | ||
| 982 | |||
| 983 | You may try not to block your entire program to wait until defragmentation finishes, | ||
| 984 | but do it in the background, as long as you carefully fullfill requirements described | ||
| 985 | in function vmaDefragmentationBegin(). | ||
| 986 | |||
| 987 | \section defragmentation_additional_notes Additional notes | ||
| 988 | |||
| 989 | It is only legal to defragment allocations bound to: | ||
| 990 | |||
| 991 | - buffers | ||
| 992 | - images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and | ||
| 993 | being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`. | ||
| 994 | |||
| 995 | Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other | ||
| 996 | layout may give undefined results. | ||
| 997 | |||
| 998 | If you defragment allocations bound to images, new images to be bound to new | ||
| 999 | memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED` | ||
| 1000 | and then transitioned to their original layout from before defragmentation if | ||
| 1001 | needed using an image memory barrier. | ||
| 1002 | |||
| 1003 | While using defragmentation, you may experience validation layer warnings, which you just need to ignore. | ||
| 1004 | See [Validation layer warnings](@ref general_considerations_validation_layer_warnings). | ||
| 1005 | |||
| 1006 | Please don't expect memory to be fully compacted after defragmentation. | ||
| 1007 | Algorithms inside are based on some heuristics that try to maximize number of Vulkan | ||
| 1008 | memory blocks to make totally empty to release them, as well as to maximimze continuous | ||
| 1009 | empty space inside remaining blocks, while minimizing the number and size of allocations that | ||
| 1010 | need to be moved. Some fragmentation may still remain - this is normal. | ||
| 1011 | |||
| 1012 | \section defragmentation_custom_algorithm Writing custom defragmentation algorithm | ||
| 1013 | |||
| 1014 | If you want to implement your own, custom defragmentation algorithm, | ||
| 1015 | there is infrastructure prepared for that, | ||
| 1016 | but it is not exposed through the library API - you need to hack its source code. | ||
| 1017 | Here are steps needed to do this: | ||
| 1018 | |||
| 1019 | -# Main thing you need to do is to define your own class derived from base abstract | ||
| 1020 | class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods. | ||
| 1021 | See definition and comments of this class for details. | ||
| 1022 | -# Your code needs to interact with device memory block metadata. | ||
| 1023 | If you need more access to its data than it's provided by its public interface, | ||
| 1024 | declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`. | ||
| 1025 | -# If you want to create a flag that would enable your algorithm or pass some additional | ||
| 1026 | flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in | ||
| 1027 | VmaDefragmentationInfo2::flags. | ||
| 1028 | -# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object | ||
| 1029 | of your new class whenever needed. | ||
| 1030 | |||
| 1031 | |||
| 1032 | \page lost_allocations Lost allocations | ||
| 1033 | |||
| 1034 | If your game oversubscribes video memory, if may work OK in previous-generation | ||
| 1035 | graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically | ||
| 1036 | paged to system RAM. In Vulkan you can't do it because when you run out of | ||
| 1037 | memory, an allocation just fails. If you have more data (e.g. textures) that can | ||
| 1038 | fit into VRAM and you don't need it all at once, you may want to upload them to | ||
| 1039 | GPU on demand and "push out" ones that are not used for a long time to make room | ||
| 1040 | for the new ones, effectively using VRAM (or a cartain memory pool) as a form of | ||
| 1041 | cache. Vulkan Memory Allocator can help you with that by supporting a concept of | ||
| 1042 | "lost allocations". | ||
| 1043 | |||
| 1044 | To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT | ||
| 1045 | flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to | ||
| 1046 | such allocation in every new frame, you need to query it if it's not lost. | ||
| 1047 | To check it, call vmaTouchAllocation(). | ||
| 1048 | If the allocation is lost, you should not use it or buffer/image bound to it. | ||
| 1049 | You mustn't forget to destroy this allocation and this buffer/image. | ||
| 1050 | vmaGetAllocationInfo() can also be used for checking status of the allocation. | ||
| 1051 | Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`. | ||
| 1052 | |||
| 1053 | To create an allocation that can make some other allocations lost to make room | ||
| 1054 | for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will | ||
| 1055 | usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and | ||
| 1056 | #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time. | ||
| 1057 | |||
| 1058 | Warning! Current implementation uses quite naive, brute force algorithm, | ||
| 1059 | which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT | ||
| 1060 | flag quite slow. A new, more optimal algorithm and data structure to speed this | ||
| 1061 | up is planned for the future. | ||
| 1062 | |||
| 1063 | <b>Q: When interleaving creation of new allocations with usage of existing ones, | ||
| 1064 | how do you make sure that an allocation won't become lost while it's used in the | ||
| 1065 | current frame?</b> | ||
| 1066 | |||
| 1067 | It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation | ||
| 1068 | status/parameters and checks whether it's not lost, but when it's not, it also | ||
| 1069 | atomically marks it as used in the current frame, which makes it impossible to | ||
| 1070 | become lost in that frame. It uses lockless algorithm, so it works fast and | ||
| 1071 | doesn't involve locking any internal mutex. | ||
| 1072 | |||
| 1073 | <b>Q: What if my allocation may still be in use by the GPU when it's rendering a | ||
| 1074 | previous frame while I already submit new frame on the CPU?</b> | ||
| 1075 | |||
| 1076 | You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not | ||
| 1077 | become lost for a number of additional frames back from the current one by | ||
| 1078 | specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default | ||
| 1079 | memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool). | ||
| 1080 | |||
| 1081 | <b>Q: How do you inform the library when new frame starts?</b> | ||
| 1082 | |||
| 1083 | You need to call function vmaSetCurrentFrameIndex(). | ||
| 1084 | |||
| 1085 | Example code: | ||
| 1086 | |||
| 1087 | \code | ||
| 1088 | struct MyBuffer | ||
| 1089 | { | ||
| 1090 | VkBuffer m_Buf = nullptr; | ||
| 1091 | VmaAllocation m_Alloc = nullptr; | ||
| 1092 | |||
| 1093 | // Called when the buffer is really needed in the current frame. | ||
| 1094 | void EnsureBuffer(); | ||
| 1095 | }; | ||
| 1096 | |||
| 1097 | void MyBuffer::EnsureBuffer() | ||
| 1098 | { | ||
| 1099 | // Buffer has been created. | ||
| 1100 | if(m_Buf != VK_NULL_HANDLE) | ||
| 1101 | { | ||
| 1102 | // Check if its allocation is not lost + mark it as used in current frame. | ||
| 1103 | if(vmaTouchAllocation(allocator, m_Alloc)) | ||
| 1104 | { | ||
| 1105 | // It's all OK - safe to use m_Buf. | ||
| 1106 | return; | ||
| 1107 | } | ||
| 1108 | } | ||
| 1109 | |||
| 1110 | // Buffer not yet exists or lost - destroy and recreate it. | ||
| 1111 | |||
| 1112 | vmaDestroyBuffer(allocator, m_Buf, m_Alloc); | ||
| 1113 | |||
| 1114 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; | ||
| 1115 | bufCreateInfo.size = 1024; | ||
| 1116 | bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; | ||
| 1117 | |||
| 1118 | VmaAllocationCreateInfo allocCreateInfo = {}; | ||
| 1119 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; | ||
| 1120 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT | | ||
| 1121 | VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; | ||
| 1122 | |||
| 1123 | vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr); | ||
| 1124 | } | ||
| 1125 | \endcode | ||
| 1126 | |||
| 1127 | When using lost allocations, you may see some Vulkan validation layer warnings | ||
| 1128 | about overlapping regions of memory bound to different kinds of buffers and | ||
| 1129 | images. This is still valid as long as you implement proper handling of lost | ||
| 1130 | allocations (like in the example above) and don't use them. | ||
| 1131 | |||
| 1132 | You can create an allocation that is already in lost state from the beginning using function | ||
| 1133 | vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null. | ||
| 1134 | |||
| 1135 | You can call function vmaMakePoolAllocationsLost() to set all eligible allocations | ||
| 1136 | in a specified custom pool to lost state. | ||
| 1137 | Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back | ||
| 1138 | cannot become lost. | ||
| 1139 | |||
| 1140 | <b>Q: Can I touch allocation that cannot become lost?</b> | ||
| 1141 | |||
| 1142 | Yes, although it has no visible effect. | ||
| 1143 | Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index | ||
| 1144 | also for allocations that cannot become lost, but the only way to observe it is to dump | ||
| 1145 | internal allocator state using vmaBuildStatsString(). | ||
| 1146 | You can use this feature for debugging purposes to explicitly mark allocations that you use | ||
| 1147 | in current frame and then analyze JSON dump to see for how long each allocation stays unused. | ||
| 1148 | |||
| 1149 | |||
| 1150 | \page statistics Statistics | ||
| 1151 | |||
| 1152 | This library contains functions that return information about its internal state, | ||
| 1153 | especially the amount of memory allocated from Vulkan. | ||
| 1154 | Please keep in mind that these functions need to traverse all internal data structures | ||
| 1155 | to gather these information, so they may be quite time-consuming. | ||
| 1156 | Don't call them too often. | ||
| 1157 | |||
| 1158 | \section statistics_numeric_statistics Numeric statistics | ||
| 1159 | |||
| 1160 | You can query for overall statistics of the allocator using function vmaCalculateStats(). | ||
| 1161 | Information are returned using structure #VmaStats. | ||
| 1162 | It contains #VmaStatInfo - number of allocated blocks, number of allocations | ||
| 1163 | (occupied ranges in these blocks), number of unused (free) ranges in these blocks, | ||
| 1164 | number of bytes used and unused (but still allocated from Vulkan) and other information. | ||
| 1165 | They are summed across memory heaps, memory types and total for whole allocator. | ||
| 1166 | |||
| 1167 | You can query for statistics of a custom pool using function vmaGetPoolStats(). | ||
| 1168 | Information are returned using structure #VmaPoolStats. | ||
| 1169 | |||
| 1170 | You can query for information about specific allocation using function vmaGetAllocationInfo(). | ||
| 1171 | It fill structure #VmaAllocationInfo. | ||
| 1172 | |||
| 1173 | \section statistics_json_dump JSON dump | ||
| 1174 | |||
| 1175 | You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString(). | ||
| 1176 | The result is guaranteed to be correct JSON. | ||
| 1177 | It uses ANSI encoding. | ||
| 1178 | Any strings provided by user (see [Allocation names](@ref allocation_names)) | ||
| 1179 | are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding, | ||
| 1180 | this JSON string can be treated as using this encoding. | ||
| 1181 | It must be freed using function vmaFreeStatsString(). | ||
| 1182 | |||
| 1183 | The format of this JSON string is not part of official documentation of the library, | ||
| 1184 | but it will not change in backward-incompatible way without increasing library major version number | ||
| 1185 | and appropriate mention in changelog. | ||
| 1186 | |||
| 1187 | The JSON string contains all the data that can be obtained using vmaCalculateStats(). | ||
| 1188 | It can also contain detailed map of allocated memory blocks and their regions - | ||
| 1189 | free and occupied by allocations. | ||
| 1190 | This allows e.g. to visualize the memory or assess fragmentation. | ||
| 1191 | |||
| 1192 | |||
| 1193 | \page allocation_annotation Allocation names and user data | ||
| 1194 | |||
| 1195 | \section allocation_user_data Allocation user data | ||
| 1196 | |||
| 1197 | You can annotate allocations with your own information, e.g. for debugging purposes. | ||
| 1198 | To do that, fill VmaAllocationCreateInfo::pUserData field when creating | ||
| 1199 | an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer, | ||
| 1200 | some handle, index, key, ordinal number or any other value that would associate | ||
| 1201 | the allocation with your custom metadata. | ||
| 1202 | |||
| 1203 | \code | ||
| 1204 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; | ||
| 1205 | // Fill bufferInfo... | ||
| 1206 | |||
| 1207 | MyBufferMetadata* pMetadata = CreateBufferMetadata(); | ||
| 1208 | |||
| 1209 | VmaAllocationCreateInfo allocCreateInfo = {}; | ||
| 1210 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; | ||
| 1211 | allocCreateInfo.pUserData = pMetadata; | ||
| 1212 | |||
| 1213 | VkBuffer buffer; | ||
| 1214 | VmaAllocation allocation; | ||
| 1215 | vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr); | ||
| 1216 | \endcode | ||
| 1217 | |||
| 1218 | The pointer may be later retrieved as VmaAllocationInfo::pUserData: | ||
| 1219 | |||
| 1220 | \code | ||
| 1221 | VmaAllocationInfo allocInfo; | ||
| 1222 | vmaGetAllocationInfo(allocator, allocation, &allocInfo); | ||
| 1223 | MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData; | ||
| 1224 | \endcode | ||
| 1225 | |||
| 1226 | It can also be changed using function vmaSetAllocationUserData(). | ||
| 1227 | |||
| 1228 | Values of (non-zero) allocations' `pUserData` are printed in JSON report created by | ||
| 1229 | vmaBuildStatsString(), in hexadecimal form. | ||
| 1230 | |||
| 1231 | \section allocation_names Allocation names | ||
| 1232 | |||
| 1233 | There is alternative mode available where `pUserData` pointer is used to point to | ||
| 1234 | a null-terminated string, giving a name to the allocation. To use this mode, | ||
| 1235 | set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags. | ||
| 1236 | Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to | ||
| 1237 | vmaSetAllocationUserData() must be either null or pointer to a null-terminated string. | ||
| 1238 | The library creates internal copy of the string, so the pointer you pass doesn't need | ||
| 1239 | to be valid for whole lifetime of the allocation. You can free it after the call. | ||
| 1240 | |||
| 1241 | \code | ||
| 1242 | VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; | ||
| 1243 | // Fill imageInfo... | ||
| 1244 | |||
| 1245 | std::string imageName = "Texture: "; | ||
| 1246 | imageName += fileName; | ||
| 1247 | |||
| 1248 | VmaAllocationCreateInfo allocCreateInfo = {}; | ||
| 1249 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; | ||
| 1250 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT; | ||
| 1251 | allocCreateInfo.pUserData = imageName.c_str(); | ||
| 1252 | |||
| 1253 | VkImage image; | ||
| 1254 | VmaAllocation allocation; | ||
| 1255 | vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr); | ||
| 1256 | \endcode | ||
| 1257 | |||
| 1258 | The value of `pUserData` pointer of the allocation will be different than the one | ||
| 1259 | you passed when setting allocation's name - pointing to a buffer managed | ||
| 1260 | internally that holds copy of the string. | ||
| 1261 | |||
| 1262 | \code | ||
| 1263 | VmaAllocationInfo allocInfo; | ||
| 1264 | vmaGetAllocationInfo(allocator, allocation, &allocInfo); | ||
| 1265 | const char* imageName = (const char*)allocInfo.pUserData; | ||
| 1266 | printf("Image name: %s\n", imageName); | ||
| 1267 | \endcode | ||
| 1268 | |||
| 1269 | That string is also printed in JSON report created by vmaBuildStatsString(). | ||
| 1270 | |||
| 1271 | \note Passing string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it. | ||
| 1272 | You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library. | ||
| 1273 | |||
| 1274 | |||
| 1275 | \page debugging_memory_usage Debugging incorrect memory usage | ||
| 1276 | |||
| 1277 | If you suspect a bug with memory usage, like usage of uninitialized memory or | ||
| 1278 | memory being overwritten out of bounds of an allocation, | ||
| 1279 | you can use debug features of this library to verify this. | ||
| 1280 | |||
| 1281 | \section debugging_memory_usage_initialization Memory initialization | ||
| 1282 | |||
| 1283 | If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used, | ||
| 1284 | you can enable automatic memory initialization to verify this. | ||
| 1285 | To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1. | ||
| 1286 | |||
| 1287 | \code | ||
| 1288 | #define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1 | ||
| 1289 | #include "vk_mem_alloc.h" | ||
| 1290 | \endcode | ||
| 1291 | |||
| 1292 | It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`. | ||
| 1293 | Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`. | ||
| 1294 | Memory is automatically mapped and unmapped if necessary. | ||
| 1295 | |||
| 1296 | If you find these values while debugging your program, good chances are that you incorrectly | ||
| 1297 | read Vulkan memory that is allocated but not initialized, or already freed, respectively. | ||
| 1298 | |||
| 1299 | Memory initialization works only with memory types that are `HOST_VISIBLE`. | ||
| 1300 | It works also with dedicated allocations. | ||
| 1301 | It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, | ||
| 1302 | as they cannot be mapped. | ||
| 1303 | |||
| 1304 | \section debugging_memory_usage_margins Margins | ||
| 1305 | |||
| 1306 | By default, allocations are laid out in memory blocks next to each other if possible | ||
| 1307 | (considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`). | ||
| 1308 | |||
| 1309 |  | ||
| 1310 | |||
| 1311 | Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified | ||
| 1312 | number of bytes as a margin before and after every allocation. | ||
| 1313 | |||
| 1314 | \code | ||
| 1315 | #define VMA_DEBUG_MARGIN 16 | ||
| 1316 | #include "vk_mem_alloc.h" | ||
| 1317 | \endcode | ||
| 1318 | |||
| 1319 |  | ||
| 1320 | |||
| 1321 | If your bug goes away after enabling margins, it means it may be caused by memory | ||
| 1322 | being overwritten outside of allocation boundaries. It is not 100% certain though. | ||
| 1323 | Change in application behavior may also be caused by different order and distribution | ||
| 1324 | of allocations across memory blocks after margins are applied. | ||
| 1325 | |||
| 1326 | The margin is applied also before first and after last allocation in a block. | ||
| 1327 | It may occur only once between two adjacent allocations. | ||
| 1328 | |||
| 1329 | Margins work with all types of memory. | ||
| 1330 | |||
| 1331 | Margin is applied only to allocations made out of memory blocks and not to dedicated | ||
| 1332 | allocations, which have their own memory block of specific size. | ||
| 1333 | It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag | ||
| 1334 | or those automatically decided to put into dedicated allocations, e.g. due to its | ||
| 1335 | large size or recommended by VK_KHR_dedicated_allocation extension. | ||
| 1336 | Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag. | ||
| 1337 | |||
| 1338 | Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space. | ||
| 1339 | |||
| 1340 | Note that enabling margins increases memory usage and fragmentation. | ||
| 1341 | |||
| 1342 | \section debugging_memory_usage_corruption_detection Corruption detection | ||
| 1343 | |||
| 1344 | You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation | ||
| 1345 | of contents of the margins. | ||
| 1346 | |||
| 1347 | \code | ||
| 1348 | #define VMA_DEBUG_MARGIN 16 | ||
| 1349 | #define VMA_DEBUG_DETECT_CORRUPTION 1 | ||
| 1350 | #include "vk_mem_alloc.h" | ||
| 1351 | \endcode | ||
| 1352 | |||
| 1353 | When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN` | ||
| 1354 | (it must be multiply of 4) before and after every allocation is filled with a magic number. | ||
| 1355 | This idea is also know as "canary". | ||
| 1356 | Memory is automatically mapped and unmapped if necessary. | ||
| 1357 | |||
| 1358 | This number is validated automatically when the allocation is destroyed. | ||
| 1359 | If it's not equal to the expected value, `VMA_ASSERT()` is executed. | ||
| 1360 | It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation, | ||
| 1361 | which indicates a serious bug. | ||
| 1362 | |||
| 1363 | You can also explicitly request checking margins of all allocations in all memory blocks | ||
| 1364 | that belong to specified memory types by using function vmaCheckCorruption(), | ||
| 1365 | or in memory blocks that belong to specified custom pool, by using function | ||
| 1366 | vmaCheckPoolCorruption(). | ||
| 1367 | |||
| 1368 | Margin validation (corruption detection) works only for memory types that are | ||
| 1369 | `HOST_VISIBLE` and `HOST_COHERENT`. | ||
| 1370 | |||
| 1371 | |||
| 1372 | \page record_and_replay Record and replay | ||
| 1373 | |||
| 1374 | \section record_and_replay_introduction Introduction | ||
| 1375 | |||
| 1376 | While using the library, sequence of calls to its functions together with their | ||
| 1377 | parameters can be recorded to a file and later replayed using standalone player | ||
| 1378 | application. It can be useful to: | ||
| 1379 | |||
| 1380 | - Test correctness - check if same sequence of calls will not cause crash or | ||
| 1381 | failures on a target platform. | ||
| 1382 | - Gather statistics - see number of allocations, peak memory usage, number of | ||
| 1383 | calls etc. | ||
| 1384 | - Benchmark performance - see how much time it takes to replay the whole | ||
| 1385 | sequence. | ||
| 1386 | |||
| 1387 | \section record_and_replay_usage Usage | ||
| 1388 | |||
| 1389 | Recording functionality is disabled by default. | ||
| 1390 | To enable it, define following macro before every include of this library: | ||
| 1391 | |||
| 1392 | \code | ||
| 1393 | #define VMA_RECORDING_ENABLED 1 | ||
| 1394 | \endcode | ||
| 1395 | |||
| 1396 | <b>To record sequence of calls to a file:</b> Fill in | ||
| 1397 | VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator | ||
| 1398 | object. File is opened and written during whole lifetime of the allocator. | ||
| 1399 | |||
| 1400 | <b>To replay file:</b> Use VmaReplay - standalone command-line program. | ||
| 1401 | Precompiled binary can be found in "bin" directory. | ||
| 1402 | Its source can be found in "src/VmaReplay" directory. | ||
| 1403 | Its project is generated by Premake. | ||
| 1404 | Command line syntax is printed when the program is launched without parameters. | ||
| 1405 | Basic usage: | ||
| 1406 | |||
| 1407 | VmaReplay.exe MyRecording.csv | ||
| 1408 | |||
| 1409 | <b>Documentation of file format</b> can be found in file: "docs/Recording file format.md". | ||
| 1410 | It's a human-readable, text file in CSV format (Comma Separated Values). | ||
| 1411 | |||
| 1412 | \section record_and_replay_additional_considerations Additional considerations | ||
| 1413 | |||
| 1414 | - Replaying file that was recorded on a different GPU (with different parameters | ||
| 1415 | like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different | ||
| 1416 | set of memory heaps and types) may give different performance and memory usage | ||
| 1417 | results, as well as issue some warnings and errors. | ||
| 1418 | - Current implementation of recording in VMA, as well as VmaReplay application, is | ||
| 1419 | coded and tested only on Windows. Inclusion of recording code is driven by | ||
| 1420 | `VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to | ||
| 1421 | add. Contributions are welcomed. | ||
| 1422 | |||
| 1423 | |||
| 1424 | \page usage_patterns Recommended usage patterns | ||
| 1425 | |||
| 1426 | See also slides from talk: | ||
| 1427 | [Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New) | ||
| 1428 | |||
| 1429 | |||
| 1430 | \section usage_patterns_common_mistakes Common mistakes | ||
| 1431 | |||
| 1432 | <b>Use of CPU_TO_GPU instead of CPU_ONLY memory</b> | ||
| 1433 | |||
| 1434 | #VMA_MEMORY_USAGE_CPU_TO_GPU is recommended only for resources that will be | ||
| 1435 | mapped and written by the CPU, as well as read directly by the GPU - like some | ||
| 1436 | buffers or textures updated every frame (dynamic). If you create a staging copy | ||
| 1437 | of a resource to be written by CPU and then used as a source of transfer to | ||
| 1438 | another resource placed in the GPU memory, that staging resource should be | ||
| 1439 | created with #VMA_MEMORY_USAGE_CPU_ONLY. Please read the descriptions of these | ||
| 1440 | enums carefully for details. | ||
| 1441 | |||
| 1442 | <b>Unnecessary use of custom pools</b> | ||
| 1443 | |||
| 1444 | \ref custom_memory_pools may be useful for special purposes - when you want to | ||
| 1445 | keep certain type of resources separate e.g. to reserve minimum amount of memory | ||
| 1446 | for them, limit maximum amount of memory they can occupy, or make some of them | ||
| 1447 | push out the other through the mechanism of \ref lost_allocations. For most | ||
| 1448 | resources this is not needed and so it is not recommended to create #VmaPool | ||
| 1449 | objects and allocations out of them. Allocating from the default pool is sufficient. | ||
| 1450 | |||
| 1451 | \section usage_patterns_simple Simple patterns | ||
| 1452 | |||
| 1453 | \subsection usage_patterns_simple_render_targets Render targets | ||
| 1454 | |||
| 1455 | <b>When:</b> | ||
| 1456 | Any resources that you frequently write and read on GPU, | ||
| 1457 | e.g. images used as color attachments (aka "render targets"), depth-stencil attachments, | ||
| 1458 | images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)"). | ||
| 1459 | |||
| 1460 | <b>What to do:</b> | ||
| 1461 | Create them in video memory that is fastest to access from GPU using | ||
| 1462 | #VMA_MEMORY_USAGE_GPU_ONLY. | ||
| 1463 | |||
| 1464 | Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension | ||
| 1465 | and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, | ||
| 1466 | especially if they are large or if you plan to destroy and recreate them e.g. when | ||
| 1467 | display resolution changes. | ||
| 1468 | Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later. | ||
| 1469 | |||
| 1470 | \subsection usage_patterns_simple_immutable_resources Immutable resources | ||
| 1471 | |||
| 1472 | <b>When:</b> | ||
| 1473 | Any resources that you fill on CPU only once (aka "immutable") or infrequently | ||
| 1474 | and then read frequently on GPU, | ||
| 1475 | e.g. textures, vertex and index buffers, constant buffers that don't change often. | ||
| 1476 | |||
| 1477 | <b>What to do:</b> | ||
| 1478 | Create them in video memory that is fastest to access from GPU using | ||
| 1479 | #VMA_MEMORY_USAGE_GPU_ONLY. | ||
| 1480 | |||
| 1481 | To initialize content of such resource, create a CPU-side (aka "staging") copy of it | ||
| 1482 | in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it, | ||
| 1483 | and submit a transfer from it to the GPU resource. | ||
| 1484 | You can keep the staging copy if you need it for another upload transfer in the future. | ||
| 1485 | If you don't, you can destroy it or reuse this buffer for uploading different resource | ||
| 1486 | after the transfer finishes. | ||
| 1487 | |||
| 1488 | Prefer to create just buffers in system memory rather than images, even for uploading textures. | ||
| 1489 | Use `vkCmdCopyBufferToImage()`. | ||
| 1490 | Dont use images with `VK_IMAGE_TILING_LINEAR`. | ||
| 1491 | |||
| 1492 | \subsection usage_patterns_dynamic_resources Dynamic resources | ||
| 1493 | |||
| 1494 | <b>When:</b> | ||
| 1495 | Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call, | ||
| 1496 | written on CPU, read on GPU. | ||
| 1497 | |||
| 1498 | <b>What to do:</b> | ||
| 1499 | Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU. | ||
| 1500 | You can map it and write to it directly on CPU, as well as read from it on GPU. | ||
| 1501 | |||
| 1502 | This is a more complex situation. Different solutions are possible, | ||
| 1503 | and the best one depends on specific GPU type, but you can use this simple approach for the start. | ||
| 1504 | Prefer to write to such resource sequentially (e.g. using `memcpy`). | ||
| 1505 | Don't perform random access or any reads from it on CPU, as it may be very slow. | ||
| 1506 | Also note that textures written directly from the host through a mapped pointer need to be in LINEAR not OPTIMAL layout. | ||
| 1507 | |||
| 1508 | \subsection usage_patterns_readback Readback | ||
| 1509 | |||
| 1510 | <b>When:</b> | ||
| 1511 | Resources that contain data written by GPU that you want to read back on CPU, | ||
| 1512 | e.g. results of some computations. | ||
| 1513 | |||
| 1514 | <b>What to do:</b> | ||
| 1515 | Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU. | ||
| 1516 | You can write to them directly on GPU, as well as map and read them on CPU. | ||
| 1517 | |||
| 1518 | \section usage_patterns_advanced Advanced patterns | ||
| 1519 | |||
| 1520 | \subsection usage_patterns_integrated_graphics Detecting integrated graphics | ||
| 1521 | |||
| 1522 | You can support integrated graphics (like Intel HD Graphics, AMD APU) better | ||
| 1523 | by detecting it in Vulkan. | ||
| 1524 | To do it, call `vkGetPhysicalDeviceProperties()`, inspect | ||
| 1525 | `VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`. | ||
| 1526 | When you find it, you can assume that memory is unified and all memory types are comparably fast | ||
| 1527 | to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. | ||
| 1528 | |||
| 1529 | You can then sum up sizes of all available memory heaps and treat them as useful for | ||
| 1530 | your GPU resources, instead of only `DEVICE_LOCAL` ones. | ||
| 1531 | You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them | ||
| 1532 | directly instead of submitting explicit transfer (see below). | ||
| 1533 | |||
| 1534 | \subsection usage_patterns_direct_vs_transfer Direct access versus transfer | ||
| 1535 | |||
| 1536 | For resources that you frequently write on CPU and read on GPU, many solutions are possible: | ||
| 1537 | |||
| 1538 | -# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, | ||
| 1539 | second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit transfer each time. | ||
| 1540 | -# Create just a single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU, | ||
| 1541 | read it directly on GPU. | ||
| 1542 | -# Create just a single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU, | ||
| 1543 | read it directly on GPU. | ||
| 1544 | |||
| 1545 | Which solution is the most efficient depends on your resource and especially on the GPU. | ||
| 1546 | It is best to measure it and then make the decision. | ||
| 1547 | Some general recommendations: | ||
| 1548 | |||
| 1549 | - On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead | ||
| 1550 | related to using a second copy and making transfer. | ||
| 1551 | - For small resources (e.g. constant buffers) use (2). | ||
| 1552 | Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable. | ||
| 1553 | Even if the resource ends up in system memory, its data may be cached on GPU after first | ||
| 1554 | fetch over PCIe bus. | ||
| 1555 | - For larger resources (e.g. textures), decide between (1) and (2). | ||
| 1556 | You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is | ||
| 1557 | both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1). | ||
| 1558 | |||
| 1559 | Similarly, for resources that you frequently write on GPU and read on CPU, multiple | ||
| 1560 | solutions are possible: | ||
| 1561 | |||
| 1562 | -# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, | ||
| 1563 | second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time. | ||
| 1564 | -# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU, | ||
| 1565 | map it and read it on CPU. | ||
| 1566 | |||
| 1567 | You should take some measurements to decide which option is faster in case of your specific | ||
| 1568 | resource. | ||
| 1569 | |||
| 1570 | Note that textures accessed directly from the host through a mapped pointer need to be in LINEAR layout, | ||
| 1571 | which may slow down their usage on the device. | ||
| 1572 | Textures accessed only by the device and transfer operations can use OPTIMAL layout. | ||
| 1573 | |||
| 1574 | If you don't want to specialize your code for specific types of GPUs, you can still make | ||
| 1575 | an simple optimization for cases when your resource ends up in mappable memory to use it | ||
| 1576 | directly in this case instead of creating CPU-side staging copy. | ||
| 1577 | For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable). | ||
| 1578 | |||
| 1579 | |||
| 1580 | \page configuration Configuration | ||
| 1581 | |||
| 1582 | Please check "CONFIGURATION SECTION" in the code to find macros that you can define | ||
| 1583 | before each include of this file or change directly in this file to provide | ||
| 1584 | your own implementation of basic facilities like assert, `min()` and `max()` functions, | ||
| 1585 | mutex, atomic etc. | ||
| 1586 | The library uses its own implementation of containers by default, but you can switch to using | ||
| 1587 | STL containers instead. | ||
| 1588 | |||
| 1589 | For example, define `VMA_ASSERT(expr)` before including the library to provide | ||
| 1590 | custom implementation of the assertion, compatible with your project. | ||
| 1591 | By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration | ||
| 1592 | and empty otherwise. | ||
| 1593 | |||
| 1594 | \section config_Vulkan_functions Pointers to Vulkan functions | ||
| 1595 | |||
| 1596 | There are multiple ways to import pointers to Vulkan functions in the library. | ||
| 1597 | In the simplest case you don't need to do anything. | ||
| 1598 | If the compilation or linking of your program or the initialization of the #VmaAllocator | ||
| 1599 | doesn't work for you, you can try to reconfigure it. | ||
| 1600 | |||
| 1601 | First, the allocator tries to fetch pointers to Vulkan functions linked statically, | ||
| 1602 | like this: | ||
| 1603 | |||
| 1604 | \code | ||
| 1605 | m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; | ||
| 1606 | \endcode | ||
| 1607 | |||
| 1608 | If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`. | ||
| 1609 | |||
| 1610 | Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions. | ||
| 1611 | You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or | ||
| 1612 | by using a helper library like [volk](https://github.com/zeux/volk). | ||
| 1613 | |||
| 1614 | Third, VMA tries to fetch remaining pointers that are still null by calling | ||
| 1615 | `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own. | ||
| 1616 | If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`. | ||
| 1617 | |||
| 1618 | Finally, all the function pointers required by the library (considering selected | ||
| 1619 | Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null. | ||
| 1620 | |||
| 1621 | |||
| 1622 | \section custom_memory_allocator Custom host memory allocator | ||
| 1623 | |||
| 1624 | If you use custom allocator for CPU memory rather than default operator `new` | ||
| 1625 | and `delete` from C++, you can make this library using your allocator as well | ||
| 1626 | by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These | ||
| 1627 | functions will be passed to Vulkan, as well as used by the library itself to | ||
| 1628 | make any CPU-side allocations. | ||
| 1629 | |||
| 1630 | \section allocation_callbacks Device memory allocation callbacks | ||
| 1631 | |||
| 1632 | The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally. | ||
| 1633 | You can setup callbacks to be informed about these calls, e.g. for the purpose | ||
| 1634 | of gathering some statistics. To do it, fill optional member | ||
| 1635 | VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. | ||
| 1636 | |||
| 1637 | \section heap_memory_limit Device heap memory limit | ||
| 1638 | |||
| 1639 | When device memory of certain heap runs out of free space, new allocations may | ||
| 1640 | fail (returning error code) or they may succeed, silently pushing some existing | ||
| 1641 | memory blocks from GPU VRAM to system RAM (which degrades performance). This | ||
| 1642 | behavior is implementation-dependant - it depends on GPU vendor and graphics | ||
| 1643 | driver. | ||
| 1644 | |||
| 1645 | On AMD cards it can be controlled while creating Vulkan device object by using | ||
| 1646 | VK_AMD_memory_overallocation_behavior extension, if available. | ||
| 1647 | |||
| 1648 | Alternatively, if you want to test how your program behaves with limited amount of Vulkan device | ||
| 1649 | memory available without switching your graphics card to one that really has | ||
| 1650 | smaller VRAM, you can use a feature of this library intended for this purpose. | ||
| 1651 | To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit. | ||
| 1652 | |||
| 1653 | |||
| 1654 | |||
| 1655 | \page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation | ||
| 1656 | |||
| 1657 | VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve | ||
| 1658 | performance on some GPUs. It augments Vulkan API with possibility to query | ||
| 1659 | driver whether it prefers particular buffer or image to have its own, dedicated | ||
| 1660 | allocation (separate `VkDeviceMemory` block) for better efficiency - to be able | ||
| 1661 | to do some internal optimizations. | ||
| 1662 | |||
| 1663 | The extension is supported by this library. It will be used automatically when | ||
| 1664 | enabled. To enable it: | ||
| 1665 | |||
| 1666 | 1 . When creating Vulkan device, check if following 2 device extensions are | ||
| 1667 | supported (call `vkEnumerateDeviceExtensionProperties()`). | ||
| 1668 | If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`). | ||
| 1669 | |||
| 1670 | - VK_KHR_get_memory_requirements2 | ||
| 1671 | - VK_KHR_dedicated_allocation | ||
| 1672 | |||
| 1673 | If you enabled these extensions: | ||
| 1674 | |||
| 1675 | 2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating | ||
| 1676 | your #VmaAllocator`to inform the library that you enabled required extensions | ||
| 1677 | and you want the library to use them. | ||
| 1678 | |||
| 1679 | \code | ||
| 1680 | allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; | ||
| 1681 | |||
| 1682 | vmaCreateAllocator(&allocatorInfo, &allocator); | ||
| 1683 | \endcode | ||
| 1684 | |||
| 1685 | That's all. The extension will be automatically used whenever you create a | ||
| 1686 | buffer using vmaCreateBuffer() or image using vmaCreateImage(). | ||
| 1687 | |||
| 1688 | When using the extension together with Vulkan Validation Layer, you will receive | ||
| 1689 | warnings like this: | ||
| 1690 | |||
| 1691 | vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer. | ||
| 1692 | |||
| 1693 | It is OK, you should just ignore it. It happens because you use function | ||
| 1694 | `vkGetBufferMemoryRequirements2KHR()` instead of standard | ||
| 1695 | `vkGetBufferMemoryRequirements()`, while the validation layer seems to be | ||
| 1696 | unaware of it. | ||
| 1697 | |||
| 1698 | To learn more about this extension, see: | ||
| 1699 | |||
| 1700 | - [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap44.html#VK_KHR_dedicated_allocation) | ||
| 1701 | - [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5) | ||
| 1702 | |||
| 1703 | |||
| 1704 | |||
| 1705 | \page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory | ||
| 1706 | |||
| 1707 | VK_AMD_device_coherent_memory is a device extension that enables access to | ||
| 1708 | additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and | ||
| 1709 | `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for | ||
| 1710 | allocation of buffers intended for writing "breadcrumb markers" in between passes | ||
| 1711 | or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases. | ||
| 1712 | |||
| 1713 | When the extension is available but has not been enabled, Vulkan physical device | ||
| 1714 | still exposes those memory types, but their usage is forbidden. VMA automatically | ||
| 1715 | takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt | ||
| 1716 | to allocate memory of such type is made. | ||
| 1717 | |||
| 1718 | If you want to use this extension in connection with VMA, follow these steps: | ||
| 1719 | |||
| 1720 | \section vk_amd_device_coherent_memory_initialization Initialization | ||
| 1721 | |||
| 1722 | 1) Call `vkEnumerateDeviceExtensionProperties` for the physical device. | ||
| 1723 | Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory". | ||
| 1724 | |||
| 1725 | 2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. | ||
| 1726 | Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned. | ||
| 1727 | Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true. | ||
| 1728 | |||
| 1729 | 3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory" | ||
| 1730 | to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. | ||
| 1731 | |||
| 1732 | 4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. | ||
| 1733 | Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. | ||
| 1734 | Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to | ||
| 1735 | `VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`. | ||
| 1736 | |||
| 1737 | 5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you | ||
| 1738 | have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT | ||
| 1739 | to VmaAllocatorCreateInfo::flags. | ||
| 1740 | |||
| 1741 | \section vk_amd_device_coherent_memory_usage Usage | ||
| 1742 | |||
| 1743 | After following steps described above, you can create VMA allocations and custom pools | ||
| 1744 | out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible | ||
| 1745 | devices. There are multiple ways to do it, for example: | ||
| 1746 | |||
| 1747 | - You can request or prefer to allocate out of such memory types by adding | ||
| 1748 | `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags | ||
| 1749 | or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with | ||
| 1750 | other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage. | ||
| 1751 | - If you manually found memory type index to use for this purpose, force allocation | ||
| 1752 | from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`. | ||
| 1753 | |||
| 1754 | \section vk_amd_device_coherent_memory_more_information More information | ||
| 1755 | |||
| 1756 | To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap44.html#VK_AMD_device_coherent_memory) | ||
| 1757 | |||
| 1758 | Example use of this extension can be found in the code of the sample and test suite | ||
| 1759 | accompanying this library. | ||
| 1760 | |||
| 1761 | |||
| 1762 | \page enabling_buffer_device_address Enabling buffer device address | ||
| 1763 | |||
| 1764 | Device extension VK_KHR_buffer_device_address | ||
| 1765 | allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code. | ||
| 1766 | It is promoted to core Vulkan 1.2. | ||
| 1767 | |||
| 1768 | If you want to use this feature in connection with VMA, follow these steps: | ||
| 1769 | |||
| 1770 | \section enabling_buffer_device_address_initialization Initialization | ||
| 1771 | |||
| 1772 | 1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device. | ||
| 1773 | Check if the extension is supported - if returned array of `VkExtensionProperties` contains | ||
| 1774 | "VK_KHR_buffer_device_address". | ||
| 1775 | |||
| 1776 | 2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. | ||
| 1777 | Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned. | ||
| 1778 | Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures*::bufferDeviceAddress` is true. | ||
| 1779 | |||
| 1780 | 3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add | ||
| 1781 | "VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. | ||
| 1782 | |||
| 1783 | 4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. | ||
| 1784 | Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. | ||
| 1785 | Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to | ||
| 1786 | `VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`. | ||
| 1787 | |||
| 1788 | 5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you | ||
| 1789 | have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT | ||
| 1790 | to VmaAllocatorCreateInfo::flags. | ||
| 1791 | |||
| 1792 | \section enabling_buffer_device_address_usage Usage | ||
| 1793 | |||
| 1794 | After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA. | ||
| 1795 | The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to | ||
| 1796 | allocated memory blocks wherever it might be needed. | ||
| 1797 | |||
| 1798 | Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`. | ||
| 1799 | The second part of this functionality related to "capture and replay" is not supported, | ||
| 1800 | as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage. | ||
| 1801 | |||
| 1802 | \section enabling_buffer_device_address_more_information More information | ||
| 1803 | |||
| 1804 | To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address) | ||
| 1805 | |||
| 1806 | Example use of this extension can be found in the code of the sample and test suite | ||
| 1807 | accompanying this library. | ||
| 1808 | |||
| 1809 | \page general_considerations General considerations | ||
| 1810 | |||
| 1811 | \section general_considerations_thread_safety Thread safety | ||
| 1812 | |||
| 1813 | - The library has no global state, so separate #VmaAllocator objects can be used | ||
| 1814 | independently. | ||
| 1815 | There should be no need to create multiple such objects though - one per `VkDevice` is enough. | ||
| 1816 | - By default, all calls to functions that take #VmaAllocator as first parameter | ||
| 1817 | are safe to call from multiple threads simultaneously because they are | ||
| 1818 | synchronized internally when needed. | ||
| 1819 | - When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT | ||
| 1820 | flag, calls to functions that take such #VmaAllocator object must be | ||
| 1821 | synchronized externally. | ||
| 1822 | - Access to a #VmaAllocation object must be externally synchronized. For example, | ||
| 1823 | you must not call vmaGetAllocationInfo() and vmaMapMemory() from different | ||
| 1824 | threads at the same time if you pass the same #VmaAllocation object to these | ||
| 1825 | functions. | ||
| 1826 | |||
| 1827 | \section general_considerations_validation_layer_warnings Validation layer warnings | ||
| 1828 | |||
| 1829 | When using this library, you can meet following types of warnings issued by | ||
| 1830 | Vulkan validation layer. They don't necessarily indicate a bug, so you may need | ||
| 1831 | to just ignore them. | ||
| 1832 | |||
| 1833 | - *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.* | ||
| 1834 | - It happens when VK_KHR_dedicated_allocation extension is enabled. | ||
| 1835 | `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it. | ||
| 1836 | - *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.* | ||
| 1837 | - It happens when you map a buffer or image, because the library maps entire | ||
| 1838 | `VkDeviceMemory` block, where different types of images and buffers may end | ||
| 1839 | up together, especially on GPUs with unified memory like Intel. | ||
| 1840 | - *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.* | ||
| 1841 | - It happens when you use lost allocations, and a new image or buffer is | ||
| 1842 | created in place of an existing object that bacame lost. | ||
| 1843 | - It may happen also when you use [defragmentation](@ref defragmentation). | ||
| 1844 | |||
| 1845 | \section general_considerations_allocation_algorithm Allocation algorithm | ||
| 1846 | |||
| 1847 | The library uses following algorithm for allocation, in order: | ||
| 1848 | |||
| 1849 | -# Try to find free range of memory in existing blocks. | ||
| 1850 | -# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size. | ||
| 1851 | -# If failed, try to create such block with size/2, size/4, size/8. | ||
| 1852 | -# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was | ||
| 1853 | specified, try to find space in existing blocks, possilby making some other | ||
| 1854 | allocations lost. | ||
| 1855 | -# If failed, try to allocate separate `VkDeviceMemory` for this allocation, | ||
| 1856 | just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. | ||
| 1857 | -# If failed, choose other memory type that meets the requirements specified in | ||
| 1858 | VmaAllocationCreateInfo and go to point 1. | ||
| 1859 | -# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. | ||
| 1860 | |||
| 1861 | \section general_considerations_features_not_supported Features not supported | ||
| 1862 | |||
| 1863 | Features deliberately excluded from the scope of this library: | ||
| 1864 | |||
| 1865 | - Data transfer. Uploading (straming) and downloading data of buffers and images | ||
| 1866 | between CPU and GPU memory and related synchronization is responsibility of the user. | ||
| 1867 | Defining some "texture" object that would automatically stream its data from a | ||
| 1868 | staging copy in CPU memory to GPU memory would rather be a feature of another, | ||
| 1869 | higher-level library implemented on top of VMA. | ||
| 1870 | - Allocations for imported/exported external memory. They tend to require | ||
| 1871 | explicit memory type index and dedicated allocation anyway, so they don't | ||
| 1872 | interact with main features of this library. Such special purpose allocations | ||
| 1873 | should be made manually, using `vkCreateBuffer()` and `vkAllocateMemory()`. | ||
| 1874 | - Recreation of buffers and images. Although the library has functions for | ||
| 1875 | buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to | ||
| 1876 | recreate these objects yourself after defragmentation. That's because the big | ||
| 1877 | structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in | ||
| 1878 | #VmaAllocation object. | ||
| 1879 | - Handling CPU memory allocation failures. When dynamically creating small C++ | ||
| 1880 | objects in CPU memory (not Vulkan memory), allocation failures are not checked | ||
| 1881 | and handled gracefully, because that would complicate code significantly and | ||
| 1882 | is usually not needed in desktop PC applications anyway. | ||
| 1883 | - Code free of any compiler warnings. Maintaining the library to compile and | ||
| 1884 | work correctly on so many different platforms is hard enough. Being free of | ||
| 1885 | any warnings, on any version of any compiler, is simply not feasible. | ||
| 1886 | - This is a C++ library with C interface. | ||
| 1887 | Bindings or ports to any other programming languages are welcomed as external projects and | ||
| 1888 | are not going to be included into this repository. | ||
| 1889 | |||
| 1890 | */ | ||
| 1891 | |||
| 1892 | #if VMA_RECORDING_ENABLED | ||
| 1893 | #include <chrono> | ||
| 1894 | #if defined(_WIN32) | ||
| 1895 | #include <windows.h> | ||
| 1896 | #else | ||
| 1897 | #include <sstream> | ||
| 1898 | #include <thread> | ||
| 1899 | #endif | ||
| 1900 | #endif | ||
| 1901 | |||
| 1902 | #ifdef __cplusplus | ||
| 1903 | extern "C" { | ||
| 1904 | #endif | ||
| 1905 | |||
| 1906 | /* | ||
| 1907 | Define this macro to 0/1 to disable/enable support for recording functionality, | ||
| 1908 | available through VmaAllocatorCreateInfo::pRecordSettings. | ||
| 1909 | */ | ||
| 1910 | #ifndef VMA_RECORDING_ENABLED | ||
| 1911 | #define VMA_RECORDING_ENABLED 0 | ||
| 1912 | #endif | ||
| 1913 | |||
| 1914 | #ifndef NOMINMAX | ||
| 1915 | #define NOMINMAX // For windows.h | ||
| 1916 | #endif | ||
| 1917 | |||
| 1918 | #if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS | ||
| 1919 | extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; | ||
| 1920 | extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; | ||
| 1921 | extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; | ||
| 1922 | extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; | ||
| 1923 | extern PFN_vkAllocateMemory vkAllocateMemory; | ||
| 1924 | extern PFN_vkFreeMemory vkFreeMemory; | ||
| 1925 | extern PFN_vkMapMemory vkMapMemory; | ||
| 1926 | extern PFN_vkUnmapMemory vkUnmapMemory; | ||
| 1927 | extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; | ||
| 1928 | extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; | ||
| 1929 | extern PFN_vkBindBufferMemory vkBindBufferMemory; | ||
| 1930 | extern PFN_vkBindImageMemory vkBindImageMemory; | ||
| 1931 | extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; | ||
| 1932 | extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; | ||
| 1933 | extern PFN_vkCreateBuffer vkCreateBuffer; | ||
| 1934 | extern PFN_vkDestroyBuffer vkDestroyBuffer; | ||
| 1935 | extern PFN_vkCreateImage vkCreateImage; | ||
| 1936 | extern PFN_vkDestroyImage vkDestroyImage; | ||
| 1937 | extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer; | ||
| 1938 | #if VMA_VULKAN_VERSION >= 1001000 | ||
| 1939 | extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; | ||
| 1940 | extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; | ||
| 1941 | extern PFN_vkBindBufferMemory2 vkBindBufferMemory2; | ||
| 1942 | extern PFN_vkBindImageMemory2 vkBindImageMemory2; | ||
| 1943 | extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2; | ||
| 1944 | #endif // #if VMA_VULKAN_VERSION >= 1001000 | ||
| 1945 | #endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES | ||
| 1946 | |||
| 1947 | #ifndef VULKAN_H_ | ||
| 1948 | #include <vulkan/vulkan.h> | ||
| 1949 | #endif | ||
| 1950 | |||
| 1951 | // Define this macro to declare maximum supported Vulkan version in format AAABBBCCC, | ||
| 1952 | // where AAA = major, BBB = minor, CCC = patch. | ||
| 1953 | // If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion. | ||
| 1954 | #if !defined(VMA_VULKAN_VERSION) | ||
| 1955 | #if defined(VK_VERSION_1_2) | ||
| 1956 | #define VMA_VULKAN_VERSION 1002000 | ||
| 1957 | #elif defined(VK_VERSION_1_1) | ||
| 1958 | #define VMA_VULKAN_VERSION 1001000 | ||
| 1959 | #else | ||
| 1960 | #define VMA_VULKAN_VERSION 1000000 | ||
| 1961 | #endif | ||
| 1962 | #endif | ||
| 1963 | |||
| 1964 | #if !defined(VMA_DEDICATED_ALLOCATION) | ||
| 1965 | #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation | ||
| 1966 | #define VMA_DEDICATED_ALLOCATION 1 | ||
| 1967 | #else | ||
| 1968 | #define VMA_DEDICATED_ALLOCATION 0 | ||
| 1969 | #endif | ||
| 1970 | #endif | ||
| 1971 | |||
| 1972 | #if !defined(VMA_BIND_MEMORY2) | ||
| 1973 | #if VK_KHR_bind_memory2 | ||
| 1974 | #define VMA_BIND_MEMORY2 1 | ||
| 1975 | #else | ||
| 1976 | #define VMA_BIND_MEMORY2 0 | ||
| 1977 | #endif | ||
| 1978 | #endif | ||
| 1979 | |||
| 1980 | #if !defined(VMA_MEMORY_BUDGET) | ||
| 1981 | #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000) | ||
| 1982 | #define VMA_MEMORY_BUDGET 1 | ||
| 1983 | #else | ||
| 1984 | #define VMA_MEMORY_BUDGET 0 | ||
| 1985 | #endif | ||
| 1986 | #endif | ||
| 1987 | |||
| 1988 | // Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers. | ||
| 1989 | #if !defined(VMA_BUFFER_DEVICE_ADDRESS) | ||
| 1990 | #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000 | ||
| 1991 | #define VMA_BUFFER_DEVICE_ADDRESS 1 | ||
| 1992 | #else | ||
| 1993 | #define VMA_BUFFER_DEVICE_ADDRESS 0 | ||
| 1994 | #endif | ||
| 1995 | #endif | ||
| 1996 | |||
| 1997 | // Define these macros to decorate all public functions with additional code, | ||
| 1998 | // before and after returned type, appropriately. This may be useful for | ||
| 1999 | // exporing the functions when compiling VMA as a separate library. Example: | ||
| 2000 | // #define VMA_CALL_PRE __declspec(dllexport) | ||
| 2001 | // #define VMA_CALL_POST __cdecl | ||
| 2002 | #ifndef VMA_CALL_PRE | ||
| 2003 | #define VMA_CALL_PRE | ||
| 2004 | #endif | ||
| 2005 | #ifndef VMA_CALL_POST | ||
| 2006 | #define VMA_CALL_POST | ||
| 2007 | #endif | ||
| 2008 | |||
| 2009 | // Define this macro to decorate pointers with an attribute specifying the | ||
| 2010 | // length of the array they point to if they are not null. | ||
| 2011 | // | ||
| 2012 | // The length may be one of | ||
| 2013 | // - The name of another parameter in the argument list where the pointer is declared | ||
| 2014 | // - The name of another member in the struct where the pointer is declared | ||
| 2015 | // - The name of a member of a struct type, meaning the value of that member in | ||
| 2016 | // the context of the call. For example | ||
| 2017 | // VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"), | ||
| 2018 | // this means the number of memory heaps available in the device associated | ||
| 2019 | // with the VmaAllocator being dealt with. | ||
| 2020 | #ifndef VMA_LEN_IF_NOT_NULL | ||
| 2021 | #define VMA_LEN_IF_NOT_NULL(len) | ||
| 2022 | #endif | ||
| 2023 | |||
| 2024 | // The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang. | ||
| 2025 | // see: https://clang.llvm.org/docs/AttributeReference.html#nullable | ||
| 2026 | #ifndef VMA_NULLABLE | ||
| 2027 | #ifdef __clang__ | ||
| 2028 | #define VMA_NULLABLE _Nullable | ||
| 2029 | #else | ||
| 2030 | #define VMA_NULLABLE | ||
| 2031 | #endif | ||
| 2032 | #endif | ||
| 2033 | |||
| 2034 | // The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang. | ||
| 2035 | // see: https://clang.llvm.org/docs/AttributeReference.html#nonnull | ||
| 2036 | #ifndef VMA_NOT_NULL | ||
| 2037 | #ifdef __clang__ | ||
| 2038 | #define VMA_NOT_NULL _Nonnull | ||
| 2039 | #else | ||
| 2040 | #define VMA_NOT_NULL | ||
| 2041 | #endif | ||
| 2042 | #endif | ||
| 2043 | |||
| 2044 | // If non-dispatchable handles are represented as pointers then we can give | ||
| 2045 | // then nullability annotations | ||
| 2046 | #ifndef VMA_NOT_NULL_NON_DISPATCHABLE | ||
| 2047 | #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) | ||
| 2048 | #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL | ||
| 2049 | #else | ||
| 2050 | #define VMA_NOT_NULL_NON_DISPATCHABLE | ||
| 2051 | #endif | ||
| 2052 | #endif | ||
| 2053 | |||
| 2054 | #ifndef VMA_NULLABLE_NON_DISPATCHABLE | ||
| 2055 | #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) | ||
| 2056 | #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE | ||
| 2057 | #else | ||
| 2058 | #define VMA_NULLABLE_NON_DISPATCHABLE | ||
| 2059 | #endif | ||
| 2060 | #endif | ||
| 2061 | |||
| 2062 | /** \struct VmaAllocator | ||
| 2063 | \brief Represents main object of this library initialized. | ||
| 2064 | |||
| 2065 | Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it. | ||
| 2066 | Call function vmaDestroyAllocator() to destroy it. | ||
| 2067 | |||
| 2068 | It is recommended to create just one object of this type per `VkDevice` object, | ||
| 2069 | right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed. | ||
| 2070 | */ | ||
| 2071 | VK_DEFINE_HANDLE(VmaAllocator) | ||
| 2072 | |||
| 2073 | /// Callback function called after successful vkAllocateMemory. | ||
| 2074 | typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)( | ||
| 2075 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2076 | uint32_t memoryType, | ||
| 2077 | VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, | ||
| 2078 | VkDeviceSize size, | ||
| 2079 | void* VMA_NULLABLE pUserData); | ||
| 2080 | /// Callback function called before vkFreeMemory. | ||
| 2081 | typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)( | ||
| 2082 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2083 | uint32_t memoryType, | ||
| 2084 | VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, | ||
| 2085 | VkDeviceSize size, | ||
| 2086 | void* VMA_NULLABLE pUserData); | ||
| 2087 | |||
| 2088 | /** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`. | ||
| 2089 | |||
| 2090 | Provided for informative purpose, e.g. to gather statistics about number of | ||
| 2091 | allocations or total amount of memory allocated in Vulkan. | ||
| 2092 | |||
| 2093 | Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. | ||
| 2094 | */ | ||
| 2095 | typedef struct VmaDeviceMemoryCallbacks { | ||
| 2096 | /// Optional, can be null. | ||
| 2097 | PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate; | ||
| 2098 | /// Optional, can be null. | ||
| 2099 | PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree; | ||
| 2100 | /// Optional, can be null. | ||
| 2101 | void* VMA_NULLABLE pUserData; | ||
| 2102 | } VmaDeviceMemoryCallbacks; | ||
| 2103 | |||
| 2104 | /// Flags for created #VmaAllocator. | ||
| 2105 | typedef enum VmaAllocatorCreateFlagBits { | ||
| 2106 | /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. | ||
| 2107 | |||
| 2108 | Using this flag may increase performance because internal mutexes are not used. | ||
| 2109 | */ | ||
| 2110 | VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001, | ||
| 2111 | /** \brief Enables usage of VK_KHR_dedicated_allocation extension. | ||
| 2112 | |||
| 2113 | The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. | ||
| 2114 | When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. | ||
| 2115 | |||
| 2116 | Using this extenion will automatically allocate dedicated blocks of memory for | ||
| 2117 | some buffers and images instead of suballocating place for them out of bigger | ||
| 2118 | memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT | ||
| 2119 | flag) when it is recommended by the driver. It may improve performance on some | ||
| 2120 | GPUs. | ||
| 2121 | |||
| 2122 | You may set this flag only if you found out that following device extensions are | ||
| 2123 | supported, you enabled them while creating Vulkan device passed as | ||
| 2124 | VmaAllocatorCreateInfo::device, and you want them to be used internally by this | ||
| 2125 | library: | ||
| 2126 | |||
| 2127 | - VK_KHR_get_memory_requirements2 (device extension) | ||
| 2128 | - VK_KHR_dedicated_allocation (device extension) | ||
| 2129 | |||
| 2130 | When this flag is set, you can experience following warnings reported by Vulkan | ||
| 2131 | validation layer. You can ignore them. | ||
| 2132 | |||
| 2133 | > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer. | ||
| 2134 | */ | ||
| 2135 | VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002, | ||
| 2136 | /** | ||
| 2137 | Enables usage of VK_KHR_bind_memory2 extension. | ||
| 2138 | |||
| 2139 | The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. | ||
| 2140 | When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. | ||
| 2141 | |||
| 2142 | You may set this flag only if you found out that this device extension is supported, | ||
| 2143 | you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, | ||
| 2144 | and you want it to be used internally by this library. | ||
| 2145 | |||
| 2146 | The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`, | ||
| 2147 | which allow to pass a chain of `pNext` structures while binding. | ||
| 2148 | This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2(). | ||
| 2149 | */ | ||
| 2150 | VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004, | ||
| 2151 | /** | ||
| 2152 | Enables usage of VK_EXT_memory_budget extension. | ||
| 2153 | |||
| 2154 | You may set this flag only if you found out that this device extension is supported, | ||
| 2155 | you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, | ||
| 2156 | and you want it to be used internally by this library, along with another instance extension | ||
| 2157 | VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted). | ||
| 2158 | |||
| 2159 | The extension provides query for current memory usage and budget, which will probably | ||
| 2160 | be more accurate than an estimation used by the library otherwise. | ||
| 2161 | */ | ||
| 2162 | VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008, | ||
| 2163 | /** | ||
| 2164 | Enables usage of VK_AMD_device_coherent_memory extension. | ||
| 2165 | |||
| 2166 | You may set this flag only if you: | ||
| 2167 | |||
| 2168 | - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, | ||
| 2169 | - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device, | ||
| 2170 | - want it to be used internally by this library. | ||
| 2171 | |||
| 2172 | The extension and accompanying device feature provide access to memory types with | ||
| 2173 | `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags. | ||
| 2174 | They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR. | ||
| 2175 | |||
| 2176 | When the extension is not enabled, such memory types are still enumerated, but their usage is illegal. | ||
| 2177 | To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type, | ||
| 2178 | returning `VK_ERROR_FEATURE_NOT_PRESENT`. | ||
| 2179 | */ | ||
| 2180 | VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010, | ||
| 2181 | /** | ||
| 2182 | Enables usage of "buffer device address" feature, which allows you to use function | ||
| 2183 | `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader. | ||
| 2184 | |||
| 2185 | You may set this flag only if you: | ||
| 2186 | |||
| 2187 | 1. (For Vulkan version < 1.2) Found as available and enabled device extension | ||
| 2188 | VK_KHR_buffer_device_address. | ||
| 2189 | This extension is promoted to core Vulkan 1.2. | ||
| 2190 | 2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures*::bufferDeviceAddress`. | ||
| 2191 | |||
| 2192 | When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA. | ||
| 2193 | The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to | ||
| 2194 | allocated memory blocks wherever it might be needed. | ||
| 2195 | |||
| 2196 | For more information, see documentation chapter \ref enabling_buffer_device_address. | ||
| 2197 | */ | ||
| 2198 | VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020, | ||
| 2199 | |||
| 2200 | VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF | ||
| 2201 | } VmaAllocatorCreateFlagBits; | ||
| 2202 | typedef VkFlags VmaAllocatorCreateFlags; | ||
| 2203 | |||
| 2204 | /** \brief Pointers to some Vulkan functions - a subset used by the library. | ||
| 2205 | |||
| 2206 | Used in VmaAllocatorCreateInfo::pVulkanFunctions. | ||
| 2207 | */ | ||
| 2208 | typedef struct VmaVulkanFunctions { | ||
| 2209 | PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties; | ||
| 2210 | PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties; | ||
| 2211 | PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory; | ||
| 2212 | PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory; | ||
| 2213 | PFN_vkMapMemory VMA_NULLABLE vkMapMemory; | ||
| 2214 | PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory; | ||
| 2215 | PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges; | ||
| 2216 | PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges; | ||
| 2217 | PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory; | ||
| 2218 | PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory; | ||
| 2219 | PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements; | ||
| 2220 | PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements; | ||
| 2221 | PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer; | ||
| 2222 | PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer; | ||
| 2223 | PFN_vkCreateImage VMA_NULLABLE vkCreateImage; | ||
| 2224 | PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage; | ||
| 2225 | PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer; | ||
| 2226 | #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 | ||
| 2227 | PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR; | ||
| 2228 | PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR; | ||
| 2229 | #endif | ||
| 2230 | #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 | ||
| 2231 | PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR; | ||
| 2232 | PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR; | ||
| 2233 | #endif | ||
| 2234 | #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 | ||
| 2235 | PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR; | ||
| 2236 | #endif | ||
| 2237 | } VmaVulkanFunctions; | ||
| 2238 | |||
| 2239 | /// Flags to be used in VmaRecordSettings::flags. | ||
| 2240 | typedef enum VmaRecordFlagBits { | ||
| 2241 | /** \brief Enables flush after recording every function call. | ||
| 2242 | |||
| 2243 | Enable it if you expect your application to crash, which may leave recording file truncated. | ||
| 2244 | It may degrade performance though. | ||
| 2245 | */ | ||
| 2246 | VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001, | ||
| 2247 | |||
| 2248 | VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF | ||
| 2249 | } VmaRecordFlagBits; | ||
| 2250 | typedef VkFlags VmaRecordFlags; | ||
| 2251 | |||
| 2252 | /// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings. | ||
| 2253 | typedef struct VmaRecordSettings | ||
| 2254 | { | ||
| 2255 | /// Flags for recording. Use #VmaRecordFlagBits enum. | ||
| 2256 | VmaRecordFlags flags; | ||
| 2257 | /** \brief Path to the file that should be written by the recording. | ||
| 2258 | |||
| 2259 | Suggested extension: "csv". | ||
| 2260 | If the file already exists, it will be overwritten. | ||
| 2261 | It will be opened for the whole time #VmaAllocator object is alive. | ||
| 2262 | If opening this file fails, creation of the whole allocator object fails. | ||
| 2263 | */ | ||
| 2264 | const char* VMA_NOT_NULL pFilePath; | ||
| 2265 | } VmaRecordSettings; | ||
| 2266 | |||
| 2267 | /// Description of a Allocator to be created. | ||
| 2268 | typedef struct VmaAllocatorCreateInfo | ||
| 2269 | { | ||
| 2270 | /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum. | ||
| 2271 | VmaAllocatorCreateFlags flags; | ||
| 2272 | /// Vulkan physical device. | ||
| 2273 | /** It must be valid throughout whole lifetime of created allocator. */ | ||
| 2274 | VkPhysicalDevice VMA_NOT_NULL physicalDevice; | ||
| 2275 | /// Vulkan device. | ||
| 2276 | /** It must be valid throughout whole lifetime of created allocator. */ | ||
| 2277 | VkDevice VMA_NOT_NULL device; | ||
| 2278 | /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional. | ||
| 2279 | /** Set to 0 to use default, which is currently 256 MiB. */ | ||
| 2280 | VkDeviceSize preferredLargeHeapBlockSize; | ||
| 2281 | /// Custom CPU memory allocation callbacks. Optional. | ||
| 2282 | /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */ | ||
| 2283 | const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; | ||
| 2284 | /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional. | ||
| 2285 | /** Optional, can be null. */ | ||
| 2286 | const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks; | ||
| 2287 | /** \brief Maximum number of additional frames that are in use at the same time as current frame. | ||
| 2288 | |||
| 2289 | This value is used only when you make allocations with | ||
| 2290 | VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become | ||
| 2291 | lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. | ||
| 2292 | |||
| 2293 | For example, if you double-buffer your command buffers, so resources used for | ||
| 2294 | rendering in previous frame may still be in use by the GPU at the moment you | ||
| 2295 | allocate resources needed for the current frame, set this value to 1. | ||
| 2296 | |||
| 2297 | If you want to allow any allocations other than used in the current frame to | ||
| 2298 | become lost, set this value to 0. | ||
| 2299 | */ | ||
| 2300 | uint32_t frameInUseCount; | ||
| 2301 | /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap. | ||
| 2302 | |||
| 2303 | If not NULL, it must be a pointer to an array of | ||
| 2304 | `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on | ||
| 2305 | maximum number of bytes that can be allocated out of particular Vulkan memory | ||
| 2306 | heap. | ||
| 2307 | |||
| 2308 | Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that | ||
| 2309 | heap. This is also the default in case of `pHeapSizeLimit` = NULL. | ||
| 2310 | |||
| 2311 | If there is a limit defined for a heap: | ||
| 2312 | |||
| 2313 | - If user tries to allocate more memory from that heap using this allocator, | ||
| 2314 | the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. | ||
| 2315 | - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the | ||
| 2316 | value of this limit will be reported instead when using vmaGetMemoryProperties(). | ||
| 2317 | |||
| 2318 | Warning! Using this feature may not be equivalent to installing a GPU with | ||
| 2319 | smaller amount of memory, because graphics driver doesn't necessary fail new | ||
| 2320 | allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is | ||
| 2321 | exceeded. It may return success and just silently migrate some device memory | ||
| 2322 | blocks to system RAM. This driver behavior can also be controlled using | ||
| 2323 | VK_AMD_memory_overallocation_behavior extension. | ||
| 2324 | */ | ||
| 2325 | const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit; | ||
| 2326 | |||
| 2327 | /** \brief Pointers to Vulkan functions. Can be null. | ||
| 2328 | |||
| 2329 | For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions). | ||
| 2330 | */ | ||
| 2331 | const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions; | ||
| 2332 | /** \brief Parameters for recording of VMA calls. Can be null. | ||
| 2333 | |||
| 2334 | If not null, it enables recording of calls to VMA functions to a file. | ||
| 2335 | If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro, | ||
| 2336 | creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`. | ||
| 2337 | */ | ||
| 2338 | const VmaRecordSettings* VMA_NULLABLE pRecordSettings; | ||
| 2339 | /** \brief Handle to Vulkan instance object. | ||
| 2340 | |||
| 2341 | Starting from version 3.0.0 this member is no longer optional, it must be set! | ||
| 2342 | */ | ||
| 2343 | VkInstance VMA_NOT_NULL instance; | ||
| 2344 | /** \brief Optional. The highest version of Vulkan that the application is designed to use. | ||
| 2345 | |||
| 2346 | It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`. | ||
| 2347 | The patch version number specified is ignored. Only the major and minor versions are considered. | ||
| 2348 | It must be less or equal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`. | ||
| 2349 | Only versions 1.0 and 1.1 are supported by the current implementation. | ||
| 2350 | Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`. | ||
| 2351 | */ | ||
| 2352 | uint32_t vulkanApiVersion; | ||
| 2353 | } VmaAllocatorCreateInfo; | ||
| 2354 | |||
| 2355 | /// Creates Allocator object. | ||
| 2356 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( | ||
| 2357 | const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo, | ||
| 2358 | VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator); | ||
| 2359 | |||
| 2360 | /// Destroys allocator object. | ||
| 2361 | VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( | ||
| 2362 | VmaAllocator VMA_NULLABLE allocator); | ||
| 2363 | |||
| 2364 | /** \brief Information about existing #VmaAllocator object. | ||
| 2365 | */ | ||
| 2366 | typedef struct VmaAllocatorInfo | ||
| 2367 | { | ||
| 2368 | /** \brief Handle to Vulkan instance object. | ||
| 2369 | |||
| 2370 | This is the same value as has been passed through VmaAllocatorCreateInfo::instance. | ||
| 2371 | */ | ||
| 2372 | VkInstance VMA_NOT_NULL instance; | ||
| 2373 | /** \brief Handle to Vulkan physical device object. | ||
| 2374 | |||
| 2375 | This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice. | ||
| 2376 | */ | ||
| 2377 | VkPhysicalDevice VMA_NOT_NULL physicalDevice; | ||
| 2378 | /** \brief Handle to Vulkan device object. | ||
| 2379 | |||
| 2380 | This is the same value as has been passed through VmaAllocatorCreateInfo::device. | ||
| 2381 | */ | ||
| 2382 | VkDevice VMA_NOT_NULL device; | ||
| 2383 | } VmaAllocatorInfo; | ||
| 2384 | |||
| 2385 | /** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc. | ||
| 2386 | |||
| 2387 | It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to | ||
| 2388 | `VkPhysicalDevice`, `VkDevice` etc. every time using this function. | ||
| 2389 | */ | ||
| 2390 | VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator VMA_NOT_NULL allocator, VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo); | ||
| 2391 | |||
| 2392 | /** | ||
| 2393 | PhysicalDeviceProperties are fetched from physicalDevice by the allocator. | ||
| 2394 | You can access it here, without fetching it again on your own. | ||
| 2395 | */ | ||
| 2396 | VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( | ||
| 2397 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2398 | const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties); | ||
| 2399 | |||
| 2400 | /** | ||
| 2401 | PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator. | ||
| 2402 | You can access it here, without fetching it again on your own. | ||
| 2403 | */ | ||
| 2404 | VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( | ||
| 2405 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2406 | const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties); | ||
| 2407 | |||
| 2408 | /** | ||
| 2409 | \brief Given Memory Type Index, returns Property Flags of this memory type. | ||
| 2410 | |||
| 2411 | This is just a convenience function. Same information can be obtained using | ||
| 2412 | vmaGetMemoryProperties(). | ||
| 2413 | */ | ||
| 2414 | VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( | ||
| 2415 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2416 | uint32_t memoryTypeIndex, | ||
| 2417 | VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); | ||
| 2418 | |||
| 2419 | /** \brief Sets index of the current frame. | ||
| 2420 | |||
| 2421 | This function must be used if you make allocations with | ||
| 2422 | #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and | ||
| 2423 | #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator | ||
| 2424 | when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot | ||
| 2425 | become lost in the current frame. | ||
| 2426 | */ | ||
| 2427 | VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( | ||
| 2428 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2429 | uint32_t frameIndex); | ||
| 2430 | |||
| 2431 | /** \brief Calculated statistics of memory usage in entire allocator. | ||
| 2432 | */ | ||
| 2433 | typedef struct VmaStatInfo | ||
| 2434 | { | ||
| 2435 | /// Number of `VkDeviceMemory` Vulkan memory blocks allocated. | ||
| 2436 | uint32_t blockCount; | ||
| 2437 | /// Number of #VmaAllocation allocation objects allocated. | ||
| 2438 | uint32_t allocationCount; | ||
| 2439 | /// Number of free ranges of memory between allocations. | ||
| 2440 | uint32_t unusedRangeCount; | ||
| 2441 | /// Total number of bytes occupied by all allocations. | ||
| 2442 | VkDeviceSize usedBytes; | ||
| 2443 | /// Total number of bytes occupied by unused ranges. | ||
| 2444 | VkDeviceSize unusedBytes; | ||
| 2445 | VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax; | ||
| 2446 | VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax; | ||
| 2447 | } VmaStatInfo; | ||
| 2448 | |||
| 2449 | /// General statistics from current state of Allocator. | ||
| 2450 | typedef struct VmaStats | ||
| 2451 | { | ||
| 2452 | VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES]; | ||
| 2453 | VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS]; | ||
| 2454 | VmaStatInfo total; | ||
| 2455 | } VmaStats; | ||
| 2456 | |||
| 2457 | /** \brief Retrieves statistics from current state of the Allocator. | ||
| 2458 | |||
| 2459 | This function is called "calculate" not "get" because it has to traverse all | ||
| 2460 | internal data structures, so it may be quite slow. For faster but more brief statistics | ||
| 2461 | suitable to be called every frame or every allocation, use vmaGetBudget(). | ||
| 2462 | |||
| 2463 | Note that when using allocator from multiple threads, returned information may immediately | ||
| 2464 | become outdated. | ||
| 2465 | */ | ||
| 2466 | VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( | ||
| 2467 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2468 | VmaStats* VMA_NOT_NULL pStats); | ||
| 2469 | |||
| 2470 | /** \brief Statistics of current memory usage and available budget, in bytes, for specific memory heap. | ||
| 2471 | */ | ||
| 2472 | typedef struct VmaBudget | ||
| 2473 | { | ||
| 2474 | /** \brief Sum size of all `VkDeviceMemory` blocks allocated from particular heap, in bytes. | ||
| 2475 | */ | ||
| 2476 | VkDeviceSize blockBytes; | ||
| 2477 | |||
| 2478 | /** \brief Sum size of all allocations created in particular heap, in bytes. | ||
| 2479 | |||
| 2480 | Usually less or equal than `blockBytes`. | ||
| 2481 | Difference `blockBytes - allocationBytes` is the amount of memory allocated but unused - | ||
| 2482 | available for new allocations or wasted due to fragmentation. | ||
| 2483 | |||
| 2484 | It might be greater than `blockBytes` if there are some allocations in lost state, as they account | ||
| 2485 | to this value as well. | ||
| 2486 | */ | ||
| 2487 | VkDeviceSize allocationBytes; | ||
| 2488 | |||
| 2489 | /** \brief Estimated current memory usage of the program, in bytes. | ||
| 2490 | |||
| 2491 | Fetched from system using `VK_EXT_memory_budget` extension if enabled. | ||
| 2492 | |||
| 2493 | It might be different than `blockBytes` (usually higher) due to additional implicit objects | ||
| 2494 | also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or | ||
| 2495 | `VkDeviceMemory` blocks allocated outside of this library, if any. | ||
| 2496 | */ | ||
| 2497 | VkDeviceSize usage; | ||
| 2498 | |||
| 2499 | /** \brief Estimated amount of memory available to the program, in bytes. | ||
| 2500 | |||
| 2501 | Fetched from system using `VK_EXT_memory_budget` extension if enabled. | ||
| 2502 | |||
| 2503 | It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors | ||
| 2504 | external to the program, like other programs also consuming system resources. | ||
| 2505 | Difference `budget - usage` is the amount of additional memory that can probably | ||
| 2506 | be allocated without problems. Exceeding the budget may result in various problems. | ||
| 2507 | */ | ||
| 2508 | VkDeviceSize budget; | ||
| 2509 | } VmaBudget; | ||
| 2510 | |||
| 2511 | /** \brief Retrieves information about current memory budget for all memory heaps. | ||
| 2512 | |||
| 2513 | \param[out] pBudget Must point to array with number of elements at least equal to number of memory heaps in physical device used. | ||
| 2514 | |||
| 2515 | This function is called "get" not "calculate" because it is very fast, suitable to be called | ||
| 2516 | every frame or every allocation. For more detailed statistics use vmaCalculateStats(). | ||
| 2517 | |||
| 2518 | Note that when using allocator from multiple threads, returned information may immediately | ||
| 2519 | become outdated. | ||
| 2520 | */ | ||
| 2521 | VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget( | ||
| 2522 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2523 | VmaBudget* VMA_NOT_NULL pBudget); | ||
| 2524 | |||
| 2525 | #ifndef VMA_STATS_STRING_ENABLED | ||
| 2526 | #define VMA_STATS_STRING_ENABLED 1 | ||
| 2527 | #endif | ||
| 2528 | |||
| 2529 | #if VMA_STATS_STRING_ENABLED | ||
| 2530 | |||
| 2531 | /// Builds and returns statistics as string in JSON format. | ||
| 2532 | /** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function. | ||
| 2533 | */ | ||
| 2534 | VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( | ||
| 2535 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2536 | char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString, | ||
| 2537 | VkBool32 detailedMap); | ||
| 2538 | |||
| 2539 | VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( | ||
| 2540 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2541 | char* VMA_NULLABLE pStatsString); | ||
| 2542 | |||
| 2543 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 2544 | |||
| 2545 | /** \struct VmaPool | ||
| 2546 | \brief Represents custom memory pool | ||
| 2547 | |||
| 2548 | Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it. | ||
| 2549 | Call function vmaDestroyPool() to destroy it. | ||
| 2550 | |||
| 2551 | For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools). | ||
| 2552 | */ | ||
| 2553 | VK_DEFINE_HANDLE(VmaPool) | ||
| 2554 | |||
| 2555 | typedef enum VmaMemoryUsage | ||
| 2556 | { | ||
| 2557 | /** No intended memory usage specified. | ||
| 2558 | Use other members of VmaAllocationCreateInfo to specify your requirements. | ||
| 2559 | */ | ||
| 2560 | VMA_MEMORY_USAGE_UNKNOWN = 0, | ||
| 2561 | /** Memory will be used on device only, so fast access from the device is preferred. | ||
| 2562 | It usually means device-local GPU (video) memory. | ||
| 2563 | No need to be mappable on host. | ||
| 2564 | It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`. | ||
| 2565 | |||
| 2566 | Usage: | ||
| 2567 | |||
| 2568 | - Resources written and read by device, e.g. images used as attachments. | ||
| 2569 | - Resources transferred from host once (immutable) or infrequently and read by | ||
| 2570 | device multiple times, e.g. textures to be sampled, vertex buffers, uniform | ||
| 2571 | (constant) buffers, and majority of other types of resources used on GPU. | ||
| 2572 | |||
| 2573 | Allocation may still end up in `HOST_VISIBLE` memory on some implementations. | ||
| 2574 | In such case, you are free to map it. | ||
| 2575 | You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type. | ||
| 2576 | */ | ||
| 2577 | VMA_MEMORY_USAGE_GPU_ONLY = 1, | ||
| 2578 | /** Memory will be mappable on host. | ||
| 2579 | It usually means CPU (system) memory. | ||
| 2580 | Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`. | ||
| 2581 | CPU access is typically uncached. Writes may be write-combined. | ||
| 2582 | Resources created in this pool may still be accessible to the device, but access to them can be slow. | ||
| 2583 | It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`. | ||
| 2584 | |||
| 2585 | Usage: Staging copy of resources used as transfer source. | ||
| 2586 | */ | ||
| 2587 | VMA_MEMORY_USAGE_CPU_ONLY = 2, | ||
| 2588 | /** | ||
| 2589 | Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU. | ||
| 2590 | CPU access is typically uncached. Writes may be write-combined. | ||
| 2591 | |||
| 2592 | Usage: Resources written frequently by host (dynamic), read by device. E.g. textures (with LINEAR layout), vertex buffers, uniform buffers updated every frame or every draw call. | ||
| 2593 | */ | ||
| 2594 | VMA_MEMORY_USAGE_CPU_TO_GPU = 3, | ||
| 2595 | /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached. | ||
| 2596 | It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`. | ||
| 2597 | |||
| 2598 | Usage: | ||
| 2599 | |||
| 2600 | - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping. | ||
| 2601 | - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection. | ||
| 2602 | */ | ||
| 2603 | VMA_MEMORY_USAGE_GPU_TO_CPU = 4, | ||
| 2604 | /** CPU memory - memory that is preferably not `DEVICE_LOCAL`, but also not guaranteed to be `HOST_VISIBLE`. | ||
| 2605 | |||
| 2606 | Usage: Staging copy of resources moved from GPU memory to CPU memory as part | ||
| 2607 | of custom paging/residency mechanism, to be moved back to GPU memory when needed. | ||
| 2608 | */ | ||
| 2609 | VMA_MEMORY_USAGE_CPU_COPY = 5, | ||
| 2610 | /** Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`. | ||
| 2611 | Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation. | ||
| 2612 | |||
| 2613 | Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`. | ||
| 2614 | |||
| 2615 | Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. | ||
| 2616 | */ | ||
| 2617 | VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6, | ||
| 2618 | |||
| 2619 | VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF | ||
| 2620 | } VmaMemoryUsage; | ||
| 2621 | |||
| 2622 | /// Flags to be passed as VmaAllocationCreateInfo::flags. | ||
| 2623 | typedef enum VmaAllocationCreateFlagBits { | ||
| 2624 | /** \brief Set this flag if the allocation should have its own memory block. | ||
| 2625 | |||
| 2626 | Use it for special, big resources, like fullscreen images used as attachments. | ||
| 2627 | |||
| 2628 | You should not use this flag if VmaAllocationCreateInfo::pool is not null. | ||
| 2629 | */ | ||
| 2630 | VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001, | ||
| 2631 | |||
| 2632 | /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block. | ||
| 2633 | |||
| 2634 | If new allocation cannot be placed in any of the existing blocks, allocation | ||
| 2635 | fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. | ||
| 2636 | |||
| 2637 | You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and | ||
| 2638 | #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense. | ||
| 2639 | |||
| 2640 | If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */ | ||
| 2641 | VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002, | ||
| 2642 | /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it. | ||
| 2643 | |||
| 2644 | Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData. | ||
| 2645 | |||
| 2646 | Is it valid to use this flag for allocation made from memory type that is not | ||
| 2647 | `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is | ||
| 2648 | useful if you need an allocation that is efficient to use on GPU | ||
| 2649 | (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that | ||
| 2650 | support it (e.g. Intel GPU). | ||
| 2651 | |||
| 2652 | You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT. | ||
| 2653 | */ | ||
| 2654 | VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004, | ||
| 2655 | /** Allocation created with this flag can become lost as a result of another | ||
| 2656 | allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you | ||
| 2657 | must check it before use. | ||
| 2658 | |||
| 2659 | To check if allocation is not lost, call vmaGetAllocationInfo() and check if | ||
| 2660 | VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`. | ||
| 2661 | |||
| 2662 | For details about supporting lost allocations, see Lost Allocations | ||
| 2663 | chapter of User Guide on Main Page. | ||
| 2664 | |||
| 2665 | You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT. | ||
| 2666 | */ | ||
| 2667 | VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008, | ||
| 2668 | /** While creating allocation using this flag, other allocations that were | ||
| 2669 | created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost. | ||
| 2670 | |||
| 2671 | For details about supporting lost allocations, see Lost Allocations | ||
| 2672 | chapter of User Guide on Main Page. | ||
| 2673 | */ | ||
| 2674 | VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010, | ||
| 2675 | /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a | ||
| 2676 | null-terminated string. Instead of copying pointer value, a local copy of the | ||
| 2677 | string is made and stored in allocation's `pUserData`. The string is automatically | ||
| 2678 | freed together with the allocation. It is also used in vmaBuildStatsString(). | ||
| 2679 | */ | ||
| 2680 | VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020, | ||
| 2681 | /** Allocation will be created from upper stack in a double stack pool. | ||
| 2682 | |||
| 2683 | This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag. | ||
| 2684 | */ | ||
| 2685 | VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040, | ||
| 2686 | /** Create both buffer/image and allocation, but don't bind them together. | ||
| 2687 | It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions. | ||
| 2688 | The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage(). | ||
| 2689 | Otherwise it is ignored. | ||
| 2690 | */ | ||
| 2691 | VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080, | ||
| 2692 | /** Create allocation only if additional device memory required for it, if any, won't exceed | ||
| 2693 | memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. | ||
| 2694 | */ | ||
| 2695 | VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100, | ||
| 2696 | |||
| 2697 | /** Allocation strategy that chooses smallest possible free range for the | ||
| 2698 | allocation. | ||
| 2699 | */ | ||
| 2700 | VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = 0x00010000, | ||
| 2701 | /** Allocation strategy that chooses biggest possible free range for the | ||
| 2702 | allocation. | ||
| 2703 | */ | ||
| 2704 | VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000, | ||
| 2705 | /** Allocation strategy that chooses first suitable free range for the | ||
| 2706 | allocation. | ||
| 2707 | |||
| 2708 | "First" doesn't necessarily means the one with smallest offset in memory, | ||
| 2709 | but rather the one that is easiest and fastest to find. | ||
| 2710 | */ | ||
| 2711 | VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000, | ||
| 2712 | |||
| 2713 | /** Allocation strategy that tries to minimize memory usage. | ||
| 2714 | */ | ||
| 2715 | VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT, | ||
| 2716 | /** Allocation strategy that tries to minimize allocation time. | ||
| 2717 | */ | ||
| 2718 | VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, | ||
| 2719 | /** Allocation strategy that tries to minimize memory fragmentation. | ||
| 2720 | */ | ||
| 2721 | VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT, | ||
| 2722 | |||
| 2723 | /** A bit mask to extract only `STRATEGY` bits from entire set of flags. | ||
| 2724 | */ | ||
| 2725 | VMA_ALLOCATION_CREATE_STRATEGY_MASK = | ||
| 2726 | VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT | | ||
| 2727 | VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT | | ||
| 2728 | VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, | ||
| 2729 | |||
| 2730 | VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF | ||
| 2731 | } VmaAllocationCreateFlagBits; | ||
| 2732 | typedef VkFlags VmaAllocationCreateFlags; | ||
| 2733 | |||
| 2734 | typedef struct VmaAllocationCreateInfo | ||
| 2735 | { | ||
| 2736 | /// Use #VmaAllocationCreateFlagBits enum. | ||
| 2737 | VmaAllocationCreateFlags flags; | ||
| 2738 | /** \brief Intended usage of memory. | ||
| 2739 | |||
| 2740 | You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n | ||
| 2741 | If `pool` is not null, this member is ignored. | ||
| 2742 | */ | ||
| 2743 | VmaMemoryUsage usage; | ||
| 2744 | /** \brief Flags that must be set in a Memory Type chosen for an allocation. | ||
| 2745 | |||
| 2746 | Leave 0 if you specify memory requirements in other way. \n | ||
| 2747 | If `pool` is not null, this member is ignored.*/ | ||
| 2748 | VkMemoryPropertyFlags requiredFlags; | ||
| 2749 | /** \brief Flags that preferably should be set in a memory type chosen for an allocation. | ||
| 2750 | |||
| 2751 | Set to 0 if no additional flags are prefered. \n | ||
| 2752 | If `pool` is not null, this member is ignored. */ | ||
| 2753 | VkMemoryPropertyFlags preferredFlags; | ||
| 2754 | /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. | ||
| 2755 | |||
| 2756 | Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if | ||
| 2757 | it meets other requirements specified by this structure, with no further | ||
| 2758 | restrictions on memory type index. \n | ||
| 2759 | If `pool` is not null, this member is ignored. | ||
| 2760 | */ | ||
| 2761 | uint32_t memoryTypeBits; | ||
| 2762 | /** \brief Pool that this allocation should be created in. | ||
| 2763 | |||
| 2764 | Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: | ||
| 2765 | `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. | ||
| 2766 | */ | ||
| 2767 | VmaPool VMA_NULLABLE pool; | ||
| 2768 | /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). | ||
| 2769 | |||
| 2770 | If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either | ||
| 2771 | null or pointer to a null-terminated string. The string will be then copied to | ||
| 2772 | internal buffer, so it doesn't need to be valid after allocation call. | ||
| 2773 | */ | ||
| 2774 | void* VMA_NULLABLE pUserData; | ||
| 2775 | } VmaAllocationCreateInfo; | ||
| 2776 | |||
| 2777 | /** | ||
| 2778 | \brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo. | ||
| 2779 | |||
| 2780 | This algorithm tries to find a memory type that: | ||
| 2781 | |||
| 2782 | - Is allowed by memoryTypeBits. | ||
| 2783 | - Contains all the flags from pAllocationCreateInfo->requiredFlags. | ||
| 2784 | - Matches intended usage. | ||
| 2785 | - Has as many flags from pAllocationCreateInfo->preferredFlags as possible. | ||
| 2786 | |||
| 2787 | \return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result | ||
| 2788 | from this function or any other allocating function probably means that your | ||
| 2789 | device doesn't support any memory type with requested features for the specific | ||
| 2790 | type of resource you want to use it for. Please check parameters of your | ||
| 2791 | resource, like image layout (OPTIMAL versus LINEAR) or mip level count. | ||
| 2792 | */ | ||
| 2793 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( | ||
| 2794 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2795 | uint32_t memoryTypeBits, | ||
| 2796 | const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, | ||
| 2797 | uint32_t* VMA_NOT_NULL pMemoryTypeIndex); | ||
| 2798 | |||
| 2799 | /** | ||
| 2800 | \brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo. | ||
| 2801 | |||
| 2802 | It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. | ||
| 2803 | It internally creates a temporary, dummy buffer that never has memory bound. | ||
| 2804 | It is just a convenience function, equivalent to calling: | ||
| 2805 | |||
| 2806 | - `vkCreateBuffer` | ||
| 2807 | - `vkGetBufferMemoryRequirements` | ||
| 2808 | - `vmaFindMemoryTypeIndex` | ||
| 2809 | - `vkDestroyBuffer` | ||
| 2810 | */ | ||
| 2811 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( | ||
| 2812 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2813 | const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, | ||
| 2814 | const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, | ||
| 2815 | uint32_t* VMA_NOT_NULL pMemoryTypeIndex); | ||
| 2816 | |||
| 2817 | /** | ||
| 2818 | \brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo. | ||
| 2819 | |||
| 2820 | It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. | ||
| 2821 | It internally creates a temporary, dummy image that never has memory bound. | ||
| 2822 | It is just a convenience function, equivalent to calling: | ||
| 2823 | |||
| 2824 | - `vkCreateImage` | ||
| 2825 | - `vkGetImageMemoryRequirements` | ||
| 2826 | - `vmaFindMemoryTypeIndex` | ||
| 2827 | - `vkDestroyImage` | ||
| 2828 | */ | ||
| 2829 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( | ||
| 2830 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2831 | const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, | ||
| 2832 | const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, | ||
| 2833 | uint32_t* VMA_NOT_NULL pMemoryTypeIndex); | ||
| 2834 | |||
| 2835 | /// Flags to be passed as VmaPoolCreateInfo::flags. | ||
| 2836 | typedef enum VmaPoolCreateFlagBits { | ||
| 2837 | /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored. | ||
| 2838 | |||
| 2839 | This is an optional optimization flag. | ||
| 2840 | |||
| 2841 | If you always allocate using vmaCreateBuffer(), vmaCreateImage(), | ||
| 2842 | vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator | ||
| 2843 | knows exact type of your allocations so it can handle Buffer-Image Granularity | ||
| 2844 | in the optimal way. | ||
| 2845 | |||
| 2846 | If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(), | ||
| 2847 | exact type of such allocations is not known, so allocator must be conservative | ||
| 2848 | in handling Buffer-Image Granularity, which can lead to suboptimal allocation | ||
| 2849 | (wasted memory). In that case, if you can make sure you always allocate only | ||
| 2850 | buffers and linear images or only optimal images out of this pool, use this flag | ||
| 2851 | to make allocator disregard Buffer-Image Granularity and so make allocations | ||
| 2852 | faster and more optimal. | ||
| 2853 | */ | ||
| 2854 | VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002, | ||
| 2855 | |||
| 2856 | /** \brief Enables alternative, linear allocation algorithm in this pool. | ||
| 2857 | |||
| 2858 | Specify this flag to enable linear allocation algorithm, which always creates | ||
| 2859 | new allocations after last one and doesn't reuse space from allocations freed in | ||
| 2860 | between. It trades memory consumption for simplified algorithm and data | ||
| 2861 | structure, which has better performance and uses less memory for metadata. | ||
| 2862 | |||
| 2863 | By using this flag, you can achieve behavior of free-at-once, stack, | ||
| 2864 | ring buffer, and double stack. For details, see documentation chapter | ||
| 2865 | \ref linear_algorithm. | ||
| 2866 | |||
| 2867 | When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default). | ||
| 2868 | |||
| 2869 | For more details, see [Linear allocation algorithm](@ref linear_algorithm). | ||
| 2870 | */ | ||
| 2871 | VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004, | ||
| 2872 | |||
| 2873 | /** \brief Enables alternative, buddy allocation algorithm in this pool. | ||
| 2874 | |||
| 2875 | It operates on a tree of blocks, each having size that is a power of two and | ||
| 2876 | a half of its parent's size. Comparing to default algorithm, this one provides | ||
| 2877 | faster allocation and deallocation and decreased external fragmentation, | ||
| 2878 | at the expense of more memory wasted (internal fragmentation). | ||
| 2879 | |||
| 2880 | For more details, see [Buddy allocation algorithm](@ref buddy_algorithm). | ||
| 2881 | */ | ||
| 2882 | VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008, | ||
| 2883 | |||
| 2884 | /** Bit mask to extract only `ALGORITHM` bits from entire set of flags. | ||
| 2885 | */ | ||
| 2886 | VMA_POOL_CREATE_ALGORITHM_MASK = | ||
| 2887 | VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT | | ||
| 2888 | VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT, | ||
| 2889 | |||
| 2890 | VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF | ||
| 2891 | } VmaPoolCreateFlagBits; | ||
| 2892 | typedef VkFlags VmaPoolCreateFlags; | ||
| 2893 | |||
| 2894 | /** \brief Describes parameter of created #VmaPool. | ||
| 2895 | */ | ||
| 2896 | typedef struct VmaPoolCreateInfo { | ||
| 2897 | /** \brief Vulkan memory type index to allocate this pool from. | ||
| 2898 | */ | ||
| 2899 | uint32_t memoryTypeIndex; | ||
| 2900 | /** \brief Use combination of #VmaPoolCreateFlagBits. | ||
| 2901 | */ | ||
| 2902 | VmaPoolCreateFlags flags; | ||
| 2903 | /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional. | ||
| 2904 | |||
| 2905 | Specify nonzero to set explicit, constant size of memory blocks used by this | ||
| 2906 | pool. | ||
| 2907 | |||
| 2908 | Leave 0 to use default and let the library manage block sizes automatically. | ||
| 2909 | Sizes of particular blocks may vary. | ||
| 2910 | */ | ||
| 2911 | VkDeviceSize blockSize; | ||
| 2912 | /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty. | ||
| 2913 | |||
| 2914 | Set to 0 to have no preallocated blocks and allow the pool be completely empty. | ||
| 2915 | */ | ||
| 2916 | size_t minBlockCount; | ||
| 2917 | /** \brief Maximum number of blocks that can be allocated in this pool. Optional. | ||
| 2918 | |||
| 2919 | Set to 0 to use default, which is `SIZE_MAX`, which means no limit. | ||
| 2920 | |||
| 2921 | Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated | ||
| 2922 | throughout whole lifetime of this pool. | ||
| 2923 | */ | ||
| 2924 | size_t maxBlockCount; | ||
| 2925 | /** \brief Maximum number of additional frames that are in use at the same time as current frame. | ||
| 2926 | |||
| 2927 | This value is used only when you make allocations with | ||
| 2928 | #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become | ||
| 2929 | lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. | ||
| 2930 | |||
| 2931 | For example, if you double-buffer your command buffers, so resources used for | ||
| 2932 | rendering in previous frame may still be in use by the GPU at the moment you | ||
| 2933 | allocate resources needed for the current frame, set this value to 1. | ||
| 2934 | |||
| 2935 | If you want to allow any allocations other than used in the current frame to | ||
| 2936 | become lost, set this value to 0. | ||
| 2937 | */ | ||
| 2938 | uint32_t frameInUseCount; | ||
| 2939 | } VmaPoolCreateInfo; | ||
| 2940 | |||
| 2941 | /** \brief Describes parameter of existing #VmaPool. | ||
| 2942 | */ | ||
| 2943 | typedef struct VmaPoolStats { | ||
| 2944 | /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes. | ||
| 2945 | */ | ||
| 2946 | VkDeviceSize size; | ||
| 2947 | /** \brief Total number of bytes in the pool not used by any #VmaAllocation. | ||
| 2948 | */ | ||
| 2949 | VkDeviceSize unusedSize; | ||
| 2950 | /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost. | ||
| 2951 | */ | ||
| 2952 | size_t allocationCount; | ||
| 2953 | /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation. | ||
| 2954 | */ | ||
| 2955 | size_t unusedRangeCount; | ||
| 2956 | /** \brief Size of the largest continuous free memory region available for new allocation. | ||
| 2957 | |||
| 2958 | Making a new allocation of that size is not guaranteed to succeed because of | ||
| 2959 | possible additional margin required to respect alignment and buffer/image | ||
| 2960 | granularity. | ||
| 2961 | */ | ||
| 2962 | VkDeviceSize unusedRangeSizeMax; | ||
| 2963 | /** \brief Number of `VkDeviceMemory` blocks allocated for this pool. | ||
| 2964 | */ | ||
| 2965 | size_t blockCount; | ||
| 2966 | } VmaPoolStats; | ||
| 2967 | |||
| 2968 | /** \brief Allocates Vulkan device memory and creates #VmaPool object. | ||
| 2969 | |||
| 2970 | @param allocator Allocator object. | ||
| 2971 | @param pCreateInfo Parameters of pool to create. | ||
| 2972 | @param[out] pPool Handle to created pool. | ||
| 2973 | */ | ||
| 2974 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( | ||
| 2975 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2976 | const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo, | ||
| 2977 | VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool); | ||
| 2978 | |||
| 2979 | /** \brief Destroys #VmaPool object and frees Vulkan device memory. | ||
| 2980 | */ | ||
| 2981 | VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( | ||
| 2982 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2983 | VmaPool VMA_NULLABLE pool); | ||
| 2984 | |||
| 2985 | /** \brief Retrieves statistics of existing #VmaPool object. | ||
| 2986 | |||
| 2987 | @param allocator Allocator object. | ||
| 2988 | @param pool Pool object. | ||
| 2989 | @param[out] pPoolStats Statistics of specified pool. | ||
| 2990 | */ | ||
| 2991 | VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( | ||
| 2992 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 2993 | VmaPool VMA_NOT_NULL pool, | ||
| 2994 | VmaPoolStats* VMA_NOT_NULL pPoolStats); | ||
| 2995 | |||
| 2996 | /** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now. | ||
| 2997 | |||
| 2998 | @param allocator Allocator object. | ||
| 2999 | @param pool Pool. | ||
| 3000 | @param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information. | ||
| 3001 | */ | ||
| 3002 | VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost( | ||
| 3003 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3004 | VmaPool VMA_NOT_NULL pool, | ||
| 3005 | size_t* VMA_NULLABLE pLostAllocationCount); | ||
| 3006 | |||
| 3007 | /** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions. | ||
| 3008 | |||
| 3009 | Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, | ||
| 3010 | `VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is | ||
| 3011 | `HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). | ||
| 3012 | |||
| 3013 | Possible return values: | ||
| 3014 | |||
| 3015 | - `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool. | ||
| 3016 | - `VK_SUCCESS` - corruption detection has been performed and succeeded. | ||
| 3017 | - `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. | ||
| 3018 | `VMA_ASSERT` is also fired in that case. | ||
| 3019 | - Other value: Error returned by Vulkan, e.g. memory mapping failure. | ||
| 3020 | */ | ||
| 3021 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator VMA_NOT_NULL allocator, VmaPool VMA_NOT_NULL pool); | ||
| 3022 | |||
| 3023 | /** \brief Retrieves name of a custom pool. | ||
| 3024 | |||
| 3025 | After the call `ppName` is either null or points to an internally-owned null-terminated string | ||
| 3026 | containing name of the pool that was previously set. The pointer becomes invalid when the pool is | ||
| 3027 | destroyed or its name is changed using vmaSetPoolName(). | ||
| 3028 | */ | ||
| 3029 | VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( | ||
| 3030 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3031 | VmaPool VMA_NOT_NULL pool, | ||
| 3032 | const char* VMA_NULLABLE* VMA_NOT_NULL ppName); | ||
| 3033 | |||
| 3034 | /** \brief Sets name of a custom pool. | ||
| 3035 | |||
| 3036 | `pName` can be either null or pointer to a null-terminated string with new name for the pool. | ||
| 3037 | Function makes internal copy of the string, so it can be changed or freed immediately after this call. | ||
| 3038 | */ | ||
| 3039 | VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( | ||
| 3040 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3041 | VmaPool VMA_NOT_NULL pool, | ||
| 3042 | const char* VMA_NULLABLE pName); | ||
| 3043 | |||
| 3044 | /** \struct VmaAllocation | ||
| 3045 | \brief Represents single memory allocation. | ||
| 3046 | |||
| 3047 | It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type | ||
| 3048 | plus unique offset. | ||
| 3049 | |||
| 3050 | There are multiple ways to create such object. | ||
| 3051 | You need to fill structure VmaAllocationCreateInfo. | ||
| 3052 | For more information see [Choosing memory type](@ref choosing_memory_type). | ||
| 3053 | |||
| 3054 | Although the library provides convenience functions that create Vulkan buffer or image, | ||
| 3055 | allocate memory for it and bind them together, | ||
| 3056 | binding of the allocation to a buffer or an image is out of scope of the allocation itself. | ||
| 3057 | Allocation object can exist without buffer/image bound, | ||
| 3058 | binding can be done manually by the user, and destruction of it can be done | ||
| 3059 | independently of destruction of the allocation. | ||
| 3060 | |||
| 3061 | The object also remembers its size and some other information. | ||
| 3062 | To retrieve this information, use function vmaGetAllocationInfo() and inspect | ||
| 3063 | returned structure VmaAllocationInfo. | ||
| 3064 | |||
| 3065 | Some kinds allocations can be in lost state. | ||
| 3066 | For more information, see [Lost allocations](@ref lost_allocations). | ||
| 3067 | */ | ||
| 3068 | VK_DEFINE_HANDLE(VmaAllocation) | ||
| 3069 | |||
| 3070 | /** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo(). | ||
| 3071 | */ | ||
| 3072 | typedef struct VmaAllocationInfo { | ||
| 3073 | /** \brief Memory type index that this allocation was allocated from. | ||
| 3074 | |||
| 3075 | It never changes. | ||
| 3076 | */ | ||
| 3077 | uint32_t memoryType; | ||
| 3078 | /** \brief Handle to Vulkan memory object. | ||
| 3079 | |||
| 3080 | Same memory object can be shared by multiple allocations. | ||
| 3081 | |||
| 3082 | It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. | ||
| 3083 | |||
| 3084 | If the allocation is lost, it is equal to `VK_NULL_HANDLE`. | ||
| 3085 | */ | ||
| 3086 | VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory; | ||
| 3087 | /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation. | ||
| 3088 | |||
| 3089 | It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. | ||
| 3090 | */ | ||
| 3091 | VkDeviceSize offset; | ||
| 3092 | /** \brief Size of this allocation, in bytes. | ||
| 3093 | |||
| 3094 | It never changes, unless allocation is lost. | ||
| 3095 | */ | ||
| 3096 | VkDeviceSize size; | ||
| 3097 | /** \brief Pointer to the beginning of this allocation as mapped data. | ||
| 3098 | |||
| 3099 | If the allocation hasn't been mapped using vmaMapMemory() and hasn't been | ||
| 3100 | created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null. | ||
| 3101 | |||
| 3102 | It can change after call to vmaMapMemory(), vmaUnmapMemory(). | ||
| 3103 | It can also change after call to vmaDefragment() if this allocation is passed to the function. | ||
| 3104 | */ | ||
| 3105 | void* VMA_NULLABLE pMappedData; | ||
| 3106 | /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData(). | ||
| 3107 | |||
| 3108 | It can change after call to vmaSetAllocationUserData() for this allocation. | ||
| 3109 | */ | ||
| 3110 | void* VMA_NULLABLE pUserData; | ||
| 3111 | } VmaAllocationInfo; | ||
| 3112 | |||
| 3113 | /** \brief General purpose memory allocation. | ||
| 3114 | |||
| 3115 | @param[out] pAllocation Handle to allocated memory. | ||
| 3116 | @param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). | ||
| 3117 | |||
| 3118 | You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). | ||
| 3119 | |||
| 3120 | It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(), | ||
| 3121 | vmaCreateBuffer(), vmaCreateImage() instead whenever possible. | ||
| 3122 | */ | ||
| 3123 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( | ||
| 3124 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3125 | const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements, | ||
| 3126 | const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, | ||
| 3127 | VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, | ||
| 3128 | VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); | ||
| 3129 | |||
| 3130 | /** \brief General purpose memory allocation for multiple allocation objects at once. | ||
| 3131 | |||
| 3132 | @param allocator Allocator object. | ||
| 3133 | @param pVkMemoryRequirements Memory requirements for each allocation. | ||
| 3134 | @param pCreateInfo Creation parameters for each alloction. | ||
| 3135 | @param allocationCount Number of allocations to make. | ||
| 3136 | @param[out] pAllocations Pointer to array that will be filled with handles to created allocations. | ||
| 3137 | @param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations. | ||
| 3138 | |||
| 3139 | You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). | ||
| 3140 | |||
| 3141 | Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding. | ||
| 3142 | It is just a general purpose allocation function able to make multiple allocations at once. | ||
| 3143 | It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times. | ||
| 3144 | |||
| 3145 | All allocations are made using same parameters. All of them are created out of the same memory pool and type. | ||
| 3146 | If any allocation fails, all allocations already made within this function call are also freed, so that when | ||
| 3147 | returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`. | ||
| 3148 | */ | ||
| 3149 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( | ||
| 3150 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3151 | const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements, | ||
| 3152 | const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo, | ||
| 3153 | size_t allocationCount, | ||
| 3154 | VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations, | ||
| 3155 | VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo); | ||
| 3156 | |||
| 3157 | /** | ||
| 3158 | @param[out] pAllocation Handle to allocated memory. | ||
| 3159 | @param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). | ||
| 3160 | |||
| 3161 | You should free the memory using vmaFreeMemory(). | ||
| 3162 | */ | ||
| 3163 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( | ||
| 3164 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3165 | VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, | ||
| 3166 | const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, | ||
| 3167 | VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, | ||
| 3168 | VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); | ||
| 3169 | |||
| 3170 | /// Function similar to vmaAllocateMemoryForBuffer(). | ||
| 3171 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( | ||
| 3172 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3173 | VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, | ||
| 3174 | const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, | ||
| 3175 | VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, | ||
| 3176 | VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); | ||
| 3177 | |||
| 3178 | /** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage(). | ||
| 3179 | |||
| 3180 | Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped. | ||
| 3181 | */ | ||
| 3182 | VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( | ||
| 3183 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3184 | const VmaAllocation VMA_NULLABLE allocation); | ||
| 3185 | |||
| 3186 | /** \brief Frees memory and destroys multiple allocations. | ||
| 3187 | |||
| 3188 | Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding. | ||
| 3189 | It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(), | ||
| 3190 | vmaAllocateMemoryPages() and other functions. | ||
| 3191 | It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times. | ||
| 3192 | |||
| 3193 | Allocations in `pAllocations` array can come from any memory pools and types. | ||
| 3194 | Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped. | ||
| 3195 | */ | ||
| 3196 | VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( | ||
| 3197 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3198 | size_t allocationCount, | ||
| 3199 | const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations); | ||
| 3200 | |||
| 3201 | /** \brief Deprecated. | ||
| 3202 | |||
| 3203 | \deprecated | ||
| 3204 | In version 2.2.0 it used to try to change allocation's size without moving or reallocating it. | ||
| 3205 | In current version it returns `VK_SUCCESS` only if `newSize` equals current allocation's size. | ||
| 3206 | Otherwise returns `VK_ERROR_OUT_OF_POOL_MEMORY`, indicating that allocation's size could not be changed. | ||
| 3207 | */ | ||
| 3208 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation( | ||
| 3209 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3210 | VmaAllocation VMA_NOT_NULL allocation, | ||
| 3211 | VkDeviceSize newSize); | ||
| 3212 | |||
| 3213 | /** \brief Returns current information about specified allocation and atomically marks it as used in current frame. | ||
| 3214 | |||
| 3215 | Current paramters of given allocation are returned in `pAllocationInfo`. | ||
| 3216 | |||
| 3217 | This function also atomically "touches" allocation - marks it as used in current frame, | ||
| 3218 | just like vmaTouchAllocation(). | ||
| 3219 | If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`. | ||
| 3220 | |||
| 3221 | Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient, | ||
| 3222 | you can avoid calling it too often. | ||
| 3223 | |||
| 3224 | - You can retrieve same VmaAllocationInfo structure while creating your resource, from function | ||
| 3225 | vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change | ||
| 3226 | (e.g. due to defragmentation or allocation becoming lost). | ||
| 3227 | - If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster. | ||
| 3228 | */ | ||
| 3229 | VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( | ||
| 3230 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3231 | VmaAllocation VMA_NOT_NULL allocation, | ||
| 3232 | VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo); | ||
| 3233 | |||
| 3234 | /** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame. | ||
| 3235 | |||
| 3236 | If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, | ||
| 3237 | this function returns `VK_TRUE` if it's not in lost state, so it can still be used. | ||
| 3238 | It then also atomically "touches" the allocation - marks it as used in current frame, | ||
| 3239 | so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames. | ||
| 3240 | |||
| 3241 | If the allocation is in lost state, the function returns `VK_FALSE`. | ||
| 3242 | Memory of such allocation, as well as buffer or image bound to it, should not be used. | ||
| 3243 | Lost allocation and the buffer/image still need to be destroyed. | ||
| 3244 | |||
| 3245 | If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, | ||
| 3246 | this function always returns `VK_TRUE`. | ||
| 3247 | */ | ||
| 3248 | VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation( | ||
| 3249 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3250 | VmaAllocation VMA_NOT_NULL allocation); | ||
| 3251 | |||
| 3252 | /** \brief Sets pUserData in given allocation to new value. | ||
| 3253 | |||
| 3254 | If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT, | ||
| 3255 | pUserData must be either null, or pointer to a null-terminated string. The function | ||
| 3256 | makes local copy of the string and sets it as allocation's `pUserData`. String | ||
| 3257 | passed as pUserData doesn't need to be valid for whole lifetime of the allocation - | ||
| 3258 | you can free it after this call. String previously pointed by allocation's | ||
| 3259 | pUserData is freed from memory. | ||
| 3260 | |||
| 3261 | If the flag was not used, the value of pointer `pUserData` is just copied to | ||
| 3262 | allocation's `pUserData`. It is opaque, so you can use it however you want - e.g. | ||
| 3263 | as a pointer, ordinal number or some handle to you own data. | ||
| 3264 | */ | ||
| 3265 | VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( | ||
| 3266 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3267 | VmaAllocation VMA_NOT_NULL allocation, | ||
| 3268 | void* VMA_NULLABLE pUserData); | ||
| 3269 | |||
| 3270 | /** \brief Creates new allocation that is in lost state from the beginning. | ||
| 3271 | |||
| 3272 | It can be useful if you need a dummy, non-null allocation. | ||
| 3273 | |||
| 3274 | You still need to destroy created object using vmaFreeMemory(). | ||
| 3275 | |||
| 3276 | Returned allocation is not tied to any specific memory pool or memory type and | ||
| 3277 | not bound to any image or buffer. It has size = 0. It cannot be turned into | ||
| 3278 | a real, non-empty allocation. | ||
| 3279 | */ | ||
| 3280 | VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation( | ||
| 3281 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3282 | VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation); | ||
| 3283 | |||
| 3284 | /** \brief Maps memory represented by given allocation and returns pointer to it. | ||
| 3285 | |||
| 3286 | Maps memory represented by given allocation to make it accessible to CPU code. | ||
| 3287 | When succeeded, `*ppData` contains pointer to first byte of this memory. | ||
| 3288 | If the allocation is part of bigger `VkDeviceMemory` block, the pointer is | ||
| 3289 | correctly offseted to the beginning of region assigned to this particular | ||
| 3290 | allocation. | ||
| 3291 | |||
| 3292 | Mapping is internally reference-counted and synchronized, so despite raw Vulkan | ||
| 3293 | function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory` | ||
| 3294 | multiple times simultaneously, it is safe to call this function on allocations | ||
| 3295 | assigned to the same memory block. Actual Vulkan memory will be mapped on first | ||
| 3296 | mapping and unmapped on last unmapping. | ||
| 3297 | |||
| 3298 | If the function succeeded, you must call vmaUnmapMemory() to unmap the | ||
| 3299 | allocation when mapping is no longer needed or before freeing the allocation, at | ||
| 3300 | the latest. | ||
| 3301 | |||
| 3302 | It also safe to call this function multiple times on the same allocation. You | ||
| 3303 | must call vmaUnmapMemory() same number of times as you called vmaMapMemory(). | ||
| 3304 | |||
| 3305 | It is also safe to call this function on allocation created with | ||
| 3306 | #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time. | ||
| 3307 | You must still call vmaUnmapMemory() same number of times as you called | ||
| 3308 | vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the | ||
| 3309 | "0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. | ||
| 3310 | |||
| 3311 | This function fails when used on allocation made in memory type that is not | ||
| 3312 | `HOST_VISIBLE`. | ||
| 3313 | |||
| 3314 | This function always fails when called for allocation that was created with | ||
| 3315 | #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be | ||
| 3316 | mapped. | ||
| 3317 | |||
| 3318 | This function doesn't automatically flush or invalidate caches. | ||
| 3319 | If the allocation is made from a memory types that is not `HOST_COHERENT`, | ||
| 3320 | you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. | ||
| 3321 | */ | ||
| 3322 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( | ||
| 3323 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3324 | VmaAllocation VMA_NOT_NULL allocation, | ||
| 3325 | void* VMA_NULLABLE* VMA_NOT_NULL ppData); | ||
| 3326 | |||
| 3327 | /** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory(). | ||
| 3328 | |||
| 3329 | For details, see description of vmaMapMemory(). | ||
| 3330 | |||
| 3331 | This function doesn't automatically flush or invalidate caches. | ||
| 3332 | If the allocation is made from a memory types that is not `HOST_COHERENT`, | ||
| 3333 | you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. | ||
| 3334 | */ | ||
| 3335 | VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( | ||
| 3336 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3337 | VmaAllocation VMA_NOT_NULL allocation); | ||
| 3338 | |||
| 3339 | /** \brief Flushes memory of given allocation. | ||
| 3340 | |||
| 3341 | Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation. | ||
| 3342 | It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`. | ||
| 3343 | Unmap operation doesn't do that automatically. | ||
| 3344 | |||
| 3345 | - `offset` must be relative to the beginning of allocation. | ||
| 3346 | - `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. | ||
| 3347 | - `offset` and `size` don't have to be aligned. | ||
| 3348 | They are internally rounded down/up to multiply of `nonCoherentAtomSize`. | ||
| 3349 | - If `size` is 0, this call is ignored. | ||
| 3350 | - If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, | ||
| 3351 | this call is ignored. | ||
| 3352 | |||
| 3353 | Warning! `offset` and `size` are relative to the contents of given `allocation`. | ||
| 3354 | If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. | ||
| 3355 | Do not pass allocation's offset as `offset`!!! | ||
| 3356 | |||
| 3357 | This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is | ||
| 3358 | called, otherwise `VK_SUCCESS`. | ||
| 3359 | */ | ||
| 3360 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( | ||
| 3361 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3362 | VmaAllocation VMA_NOT_NULL allocation, | ||
| 3363 | VkDeviceSize offset, | ||
| 3364 | VkDeviceSize size); | ||
| 3365 | |||
| 3366 | /** \brief Invalidates memory of given allocation. | ||
| 3367 | |||
| 3368 | Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation. | ||
| 3369 | It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`. | ||
| 3370 | Map operation doesn't do that automatically. | ||
| 3371 | |||
| 3372 | - `offset` must be relative to the beginning of allocation. | ||
| 3373 | - `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. | ||
| 3374 | - `offset` and `size` don't have to be aligned. | ||
| 3375 | They are internally rounded down/up to multiply of `nonCoherentAtomSize`. | ||
| 3376 | - If `size` is 0, this call is ignored. | ||
| 3377 | - If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, | ||
| 3378 | this call is ignored. | ||
| 3379 | |||
| 3380 | Warning! `offset` and `size` are relative to the contents of given `allocation`. | ||
| 3381 | If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. | ||
| 3382 | Do not pass allocation's offset as `offset`!!! | ||
| 3383 | |||
| 3384 | This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if | ||
| 3385 | it is called, otherwise `VK_SUCCESS`. | ||
| 3386 | */ | ||
| 3387 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( | ||
| 3388 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3389 | VmaAllocation VMA_NOT_NULL allocation, | ||
| 3390 | VkDeviceSize offset, | ||
| 3391 | VkDeviceSize size); | ||
| 3392 | |||
| 3393 | /** \brief Flushes memory of given set of allocations. | ||
| 3394 | |||
| 3395 | Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations. | ||
| 3396 | For more information, see documentation of vmaFlushAllocation(). | ||
| 3397 | |||
| 3398 | \param allocator | ||
| 3399 | \param allocationCount | ||
| 3400 | \param allocations | ||
| 3401 | \param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero. | ||
| 3402 | \param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. | ||
| 3403 | |||
| 3404 | This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is | ||
| 3405 | called, otherwise `VK_SUCCESS`. | ||
| 3406 | */ | ||
| 3407 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( | ||
| 3408 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3409 | uint32_t allocationCount, | ||
| 3410 | const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, | ||
| 3411 | const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, | ||
| 3412 | const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); | ||
| 3413 | |||
| 3414 | /** \brief Invalidates memory of given set of allocations. | ||
| 3415 | |||
| 3416 | Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations. | ||
| 3417 | For more information, see documentation of vmaInvalidateAllocation(). | ||
| 3418 | |||
| 3419 | \param allocator | ||
| 3420 | \param allocationCount | ||
| 3421 | \param allocations | ||
| 3422 | \param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero. | ||
| 3423 | \param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. | ||
| 3424 | |||
| 3425 | This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is | ||
| 3426 | called, otherwise `VK_SUCCESS`. | ||
| 3427 | */ | ||
| 3428 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( | ||
| 3429 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3430 | uint32_t allocationCount, | ||
| 3431 | const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, | ||
| 3432 | const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, | ||
| 3433 | const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); | ||
| 3434 | |||
| 3435 | /** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions. | ||
| 3436 | |||
| 3437 | @param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked. | ||
| 3438 | |||
| 3439 | Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, | ||
| 3440 | `VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are | ||
| 3441 | `HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). | ||
| 3442 | |||
| 3443 | Possible return values: | ||
| 3444 | |||
| 3445 | - `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types. | ||
| 3446 | - `VK_SUCCESS` - corruption detection has been performed and succeeded. | ||
| 3447 | - `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. | ||
| 3448 | `VMA_ASSERT` is also fired in that case. | ||
| 3449 | - Other value: Error returned by Vulkan, e.g. memory mapping failure. | ||
| 3450 | */ | ||
| 3451 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator VMA_NOT_NULL allocator, uint32_t memoryTypeBits); | ||
| 3452 | |||
| 3453 | /** \struct VmaDefragmentationContext | ||
| 3454 | \brief Represents Opaque object that represents started defragmentation process. | ||
| 3455 | |||
| 3456 | Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it. | ||
| 3457 | Call function vmaDefragmentationEnd() to destroy it. | ||
| 3458 | */ | ||
| 3459 | VK_DEFINE_HANDLE(VmaDefragmentationContext) | ||
| 3460 | |||
| 3461 | /// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use. | ||
| 3462 | typedef enum VmaDefragmentationFlagBits { | ||
| 3463 | VMA_DEFRAGMENTATION_FLAG_INCREMENTAL = 0x1, | ||
| 3464 | VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF | ||
| 3465 | } VmaDefragmentationFlagBits; | ||
| 3466 | typedef VkFlags VmaDefragmentationFlags; | ||
| 3467 | |||
| 3468 | /** \brief Parameters for defragmentation. | ||
| 3469 | |||
| 3470 | To be used with function vmaDefragmentationBegin(). | ||
| 3471 | */ | ||
| 3472 | typedef struct VmaDefragmentationInfo2 { | ||
| 3473 | /** \brief Reserved for future use. Should be 0. | ||
| 3474 | */ | ||
| 3475 | VmaDefragmentationFlags flags; | ||
| 3476 | /** \brief Number of allocations in `pAllocations` array. | ||
| 3477 | */ | ||
| 3478 | uint32_t allocationCount; | ||
| 3479 | /** \brief Pointer to array of allocations that can be defragmented. | ||
| 3480 | |||
| 3481 | The array should have `allocationCount` elements. | ||
| 3482 | The array should not contain nulls. | ||
| 3483 | Elements in the array should be unique - same allocation cannot occur twice. | ||
| 3484 | It is safe to pass allocations that are in the lost state - they are ignored. | ||
| 3485 | All allocations not present in this array are considered non-moveable during this defragmentation. | ||
| 3486 | */ | ||
| 3487 | const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations; | ||
| 3488 | /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation. | ||
| 3489 | |||
| 3490 | The array should have `allocationCount` elements. | ||
| 3491 | You can pass null if you are not interested in this information. | ||
| 3492 | */ | ||
| 3493 | VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged; | ||
| 3494 | /** \brief Numer of pools in `pPools` array. | ||
| 3495 | */ | ||
| 3496 | uint32_t poolCount; | ||
| 3497 | /** \brief Either null or pointer to array of pools to be defragmented. | ||
| 3498 | |||
| 3499 | All the allocations in the specified pools can be moved during defragmentation | ||
| 3500 | and there is no way to check if they were really moved as in `pAllocationsChanged`, | ||
| 3501 | so you must query all the allocations in all these pools for new `VkDeviceMemory` | ||
| 3502 | and offset using vmaGetAllocationInfo() if you might need to recreate buffers | ||
| 3503 | and images bound to them. | ||
| 3504 | |||
| 3505 | The array should have `poolCount` elements. | ||
| 3506 | The array should not contain nulls. | ||
| 3507 | Elements in the array should be unique - same pool cannot occur twice. | ||
| 3508 | |||
| 3509 | Using this array is equivalent to specifying all allocations from the pools in `pAllocations`. | ||
| 3510 | It might be more efficient. | ||
| 3511 | */ | ||
| 3512 | const VmaPool VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(poolCount) pPools; | ||
| 3513 | /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`. | ||
| 3514 | |||
| 3515 | `VK_WHOLE_SIZE` means no limit. | ||
| 3516 | */ | ||
| 3517 | VkDeviceSize maxCpuBytesToMove; | ||
| 3518 | /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`. | ||
| 3519 | |||
| 3520 | `UINT32_MAX` means no limit. | ||
| 3521 | */ | ||
| 3522 | uint32_t maxCpuAllocationsToMove; | ||
| 3523 | /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`. | ||
| 3524 | |||
| 3525 | `VK_WHOLE_SIZE` means no limit. | ||
| 3526 | */ | ||
| 3527 | VkDeviceSize maxGpuBytesToMove; | ||
| 3528 | /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`. | ||
| 3529 | |||
| 3530 | `UINT32_MAX` means no limit. | ||
| 3531 | */ | ||
| 3532 | uint32_t maxGpuAllocationsToMove; | ||
| 3533 | /** \brief Optional. Command buffer where GPU copy commands will be posted. | ||
| 3534 | |||
| 3535 | If not null, it must be a valid command buffer handle that supports Transfer queue type. | ||
| 3536 | It must be in the recording state and outside of a render pass instance. | ||
| 3537 | You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd(). | ||
| 3538 | |||
| 3539 | Passing null means that only CPU defragmentation will be performed. | ||
| 3540 | */ | ||
| 3541 | VkCommandBuffer VMA_NULLABLE commandBuffer; | ||
| 3542 | } VmaDefragmentationInfo2; | ||
| 3543 | |||
| 3544 | typedef struct VmaDefragmentationPassMoveInfo { | ||
| 3545 | VmaAllocation VMA_NOT_NULL allocation; | ||
| 3546 | VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory; | ||
| 3547 | VkDeviceSize offset; | ||
| 3548 | } VmaDefragmentationPassMoveInfo; | ||
| 3549 | |||
| 3550 | /** \brief Parameters for incremental defragmentation steps. | ||
| 3551 | |||
| 3552 | To be used with function vmaBeginDefragmentationPass(). | ||
| 3553 | */ | ||
| 3554 | typedef struct VmaDefragmentationPassInfo { | ||
| 3555 | uint32_t moveCount; | ||
| 3556 | VmaDefragmentationPassMoveInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(moveCount) pMoves; | ||
| 3557 | } VmaDefragmentationPassInfo; | ||
| 3558 | |||
| 3559 | /** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment(). | ||
| 3560 | |||
| 3561 | \deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. | ||
| 3562 | */ | ||
| 3563 | typedef struct VmaDefragmentationInfo { | ||
| 3564 | /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places. | ||
| 3565 | |||
| 3566 | Default is `VK_WHOLE_SIZE`, which means no limit. | ||
| 3567 | */ | ||
| 3568 | VkDeviceSize maxBytesToMove; | ||
| 3569 | /** \brief Maximum number of allocations that can be moved to different place. | ||
| 3570 | |||
| 3571 | Default is `UINT32_MAX`, which means no limit. | ||
| 3572 | */ | ||
| 3573 | uint32_t maxAllocationsToMove; | ||
| 3574 | } VmaDefragmentationInfo; | ||
| 3575 | |||
| 3576 | /** \brief Statistics returned by function vmaDefragment(). */ | ||
| 3577 | typedef struct VmaDefragmentationStats { | ||
| 3578 | /// Total number of bytes that have been copied while moving allocations to different places. | ||
| 3579 | VkDeviceSize bytesMoved; | ||
| 3580 | /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects. | ||
| 3581 | VkDeviceSize bytesFreed; | ||
| 3582 | /// Number of allocations that have been moved to different places. | ||
| 3583 | uint32_t allocationsMoved; | ||
| 3584 | /// Number of empty `VkDeviceMemory` objects that have been released to the system. | ||
| 3585 | uint32_t deviceMemoryBlocksFreed; | ||
| 3586 | } VmaDefragmentationStats; | ||
| 3587 | |||
| 3588 | /** \brief Begins defragmentation process. | ||
| 3589 | |||
| 3590 | @param allocator Allocator object. | ||
| 3591 | @param pInfo Structure filled with parameters of defragmentation. | ||
| 3592 | @param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information. | ||
| 3593 | @param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation. | ||
| 3594 | @return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error. | ||
| 3595 | |||
| 3596 | Use this function instead of old, deprecated vmaDefragment(). | ||
| 3597 | |||
| 3598 | Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd(): | ||
| 3599 | |||
| 3600 | - You should not use any of allocations passed as `pInfo->pAllocations` or | ||
| 3601 | any allocations that belong to pools passed as `pInfo->pPools`, | ||
| 3602 | including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access | ||
| 3603 | their data. | ||
| 3604 | - Some mutexes protecting internal data structures may be locked, so trying to | ||
| 3605 | make or free any allocations, bind buffers or images, map memory, or launch | ||
| 3606 | another simultaneous defragmentation in between may cause stall (when done on | ||
| 3607 | another thread) or deadlock (when done on the same thread), unless you are | ||
| 3608 | 100% sure that defragmented allocations are in different pools. | ||
| 3609 | - Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined. | ||
| 3610 | They become valid after call to vmaDefragmentationEnd(). | ||
| 3611 | - If `pInfo->commandBuffer` is not null, you must submit that command buffer | ||
| 3612 | and make sure it finished execution before calling vmaDefragmentationEnd(). | ||
| 3613 | |||
| 3614 | For more information and important limitations regarding defragmentation, see documentation chapter: | ||
| 3615 | [Defragmentation](@ref defragmentation). | ||
| 3616 | */ | ||
| 3617 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( | ||
| 3618 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3619 | const VmaDefragmentationInfo2* VMA_NOT_NULL pInfo, | ||
| 3620 | VmaDefragmentationStats* VMA_NULLABLE pStats, | ||
| 3621 | VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext); | ||
| 3622 | |||
| 3623 | /** \brief Ends defragmentation process. | ||
| 3624 | |||
| 3625 | Use this function to finish defragmentation started by vmaDefragmentationBegin(). | ||
| 3626 | It is safe to pass `context == null`. The function then does nothing. | ||
| 3627 | */ | ||
| 3628 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( | ||
| 3629 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3630 | VmaDefragmentationContext VMA_NULLABLE context); | ||
| 3631 | |||
| 3632 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( | ||
| 3633 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3634 | VmaDefragmentationContext VMA_NULLABLE context, | ||
| 3635 | VmaDefragmentationPassInfo* VMA_NOT_NULL pInfo | ||
| 3636 | ); | ||
| 3637 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( | ||
| 3638 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3639 | VmaDefragmentationContext VMA_NULLABLE context | ||
| 3640 | ); | ||
| 3641 | |||
| 3642 | /** \brief Deprecated. Compacts memory by moving allocations. | ||
| 3643 | |||
| 3644 | @param pAllocations Array of allocations that can be moved during this compation. | ||
| 3645 | @param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays. | ||
| 3646 | @param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information. | ||
| 3647 | @param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values. | ||
| 3648 | @param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information. | ||
| 3649 | @return `VK_SUCCESS` if completed, negative error code in case of error. | ||
| 3650 | |||
| 3651 | \deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. | ||
| 3652 | |||
| 3653 | This function works by moving allocations to different places (different | ||
| 3654 | `VkDeviceMemory` objects and/or different offsets) in order to optimize memory | ||
| 3655 | usage. Only allocations that are in `pAllocations` array can be moved. All other | ||
| 3656 | allocations are considered nonmovable in this call. Basic rules: | ||
| 3657 | |||
| 3658 | - Only allocations made in memory types that have | ||
| 3659 | `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` | ||
| 3660 | flags can be compacted. You may pass other allocations but it makes no sense - | ||
| 3661 | these will never be moved. | ||
| 3662 | - Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or | ||
| 3663 | #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations | ||
| 3664 | passed to this function that come from such pools are ignored. | ||
| 3665 | - Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or | ||
| 3666 | created as dedicated allocations for any other reason are also ignored. | ||
| 3667 | - Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT | ||
| 3668 | flag can be compacted. If not persistently mapped, memory will be mapped | ||
| 3669 | temporarily inside this function if needed. | ||
| 3670 | - You must not pass same #VmaAllocation object multiple times in `pAllocations` array. | ||
| 3671 | |||
| 3672 | The function also frees empty `VkDeviceMemory` blocks. | ||
| 3673 | |||
| 3674 | Warning: This function may be time-consuming, so you shouldn't call it too often | ||
| 3675 | (like after every resource creation/destruction). | ||
| 3676 | You can call it on special occasions (like when reloading a game level or | ||
| 3677 | when you just destroyed a lot of objects). Calling it every frame may be OK, but | ||
| 3678 | you should measure that on your platform. | ||
| 3679 | |||
| 3680 | For more information, see [Defragmentation](@ref defragmentation) chapter. | ||
| 3681 | */ | ||
| 3682 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( | ||
| 3683 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3684 | const VmaAllocation VMA_NOT_NULL* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations, | ||
| 3685 | size_t allocationCount, | ||
| 3686 | VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged, | ||
| 3687 | const VmaDefragmentationInfo* VMA_NULLABLE pDefragmentationInfo, | ||
| 3688 | VmaDefragmentationStats* VMA_NULLABLE pDefragmentationStats); | ||
| 3689 | |||
| 3690 | /** \brief Binds buffer to allocation. | ||
| 3691 | |||
| 3692 | Binds specified buffer to region of memory represented by specified allocation. | ||
| 3693 | Gets `VkDeviceMemory` handle and offset from the allocation. | ||
| 3694 | If you want to create a buffer, allocate memory for it and bind them together separately, | ||
| 3695 | you should use this function for binding instead of standard `vkBindBufferMemory()`, | ||
| 3696 | because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple | ||
| 3697 | allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously | ||
| 3698 | (which is illegal in Vulkan). | ||
| 3699 | |||
| 3700 | It is recommended to use function vmaCreateBuffer() instead of this one. | ||
| 3701 | */ | ||
| 3702 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( | ||
| 3703 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3704 | VmaAllocation VMA_NOT_NULL allocation, | ||
| 3705 | VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer); | ||
| 3706 | |||
| 3707 | /** \brief Binds buffer to allocation with additional parameters. | ||
| 3708 | |||
| 3709 | @param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0. | ||
| 3710 | @param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null. | ||
| 3711 | |||
| 3712 | This function is similar to vmaBindBufferMemory(), but it provides additional parameters. | ||
| 3713 | |||
| 3714 | If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag | ||
| 3715 | or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails. | ||
| 3716 | */ | ||
| 3717 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( | ||
| 3718 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3719 | VmaAllocation VMA_NOT_NULL allocation, | ||
| 3720 | VkDeviceSize allocationLocalOffset, | ||
| 3721 | VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, | ||
| 3722 | const void* VMA_NULLABLE pNext); | ||
| 3723 | |||
| 3724 | /** \brief Binds image to allocation. | ||
| 3725 | |||
| 3726 | Binds specified image to region of memory represented by specified allocation. | ||
| 3727 | Gets `VkDeviceMemory` handle and offset from the allocation. | ||
| 3728 | If you want to create an image, allocate memory for it and bind them together separately, | ||
| 3729 | you should use this function for binding instead of standard `vkBindImageMemory()`, | ||
| 3730 | because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple | ||
| 3731 | allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously | ||
| 3732 | (which is illegal in Vulkan). | ||
| 3733 | |||
| 3734 | It is recommended to use function vmaCreateImage() instead of this one. | ||
| 3735 | */ | ||
| 3736 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( | ||
| 3737 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3738 | VmaAllocation VMA_NOT_NULL allocation, | ||
| 3739 | VkImage VMA_NOT_NULL_NON_DISPATCHABLE image); | ||
| 3740 | |||
| 3741 | /** \brief Binds image to allocation with additional parameters. | ||
| 3742 | |||
| 3743 | @param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0. | ||
| 3744 | @param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null. | ||
| 3745 | |||
| 3746 | This function is similar to vmaBindImageMemory(), but it provides additional parameters. | ||
| 3747 | |||
| 3748 | If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag | ||
| 3749 | or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails. | ||
| 3750 | */ | ||
| 3751 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( | ||
| 3752 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3753 | VmaAllocation VMA_NOT_NULL allocation, | ||
| 3754 | VkDeviceSize allocationLocalOffset, | ||
| 3755 | VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, | ||
| 3756 | const void* VMA_NULLABLE pNext); | ||
| 3757 | |||
| 3758 | /** | ||
| 3759 | @param[out] pBuffer Buffer that was created. | ||
| 3760 | @param[out] pAllocation Allocation that was created. | ||
| 3761 | @param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). | ||
| 3762 | |||
| 3763 | This function automatically: | ||
| 3764 | |||
| 3765 | -# Creates buffer. | ||
| 3766 | -# Allocates appropriate memory for it. | ||
| 3767 | -# Binds the buffer with the memory. | ||
| 3768 | |||
| 3769 | If any of these operations fail, buffer and allocation are not created, | ||
| 3770 | returned value is negative error code, *pBuffer and *pAllocation are null. | ||
| 3771 | |||
| 3772 | If the function succeeded, you must destroy both buffer and allocation when you | ||
| 3773 | no longer need them using either convenience function vmaDestroyBuffer() or | ||
| 3774 | separately, using `vkDestroyBuffer()` and vmaFreeMemory(). | ||
| 3775 | |||
| 3776 | If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used, | ||
| 3777 | VK_KHR_dedicated_allocation extension is used internally to query driver whether | ||
| 3778 | it requires or prefers the new buffer to have dedicated allocation. If yes, | ||
| 3779 | and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null | ||
| 3780 | and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated | ||
| 3781 | allocation for this buffer, just like when using | ||
| 3782 | VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. | ||
| 3783 | */ | ||
| 3784 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( | ||
| 3785 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3786 | const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, | ||
| 3787 | const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, | ||
| 3788 | VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer, | ||
| 3789 | VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, | ||
| 3790 | VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); | ||
| 3791 | |||
| 3792 | /** \brief Destroys Vulkan buffer and frees allocated memory. | ||
| 3793 | |||
| 3794 | This is just a convenience function equivalent to: | ||
| 3795 | |||
| 3796 | \code | ||
| 3797 | vkDestroyBuffer(device, buffer, allocationCallbacks); | ||
| 3798 | vmaFreeMemory(allocator, allocation); | ||
| 3799 | \endcode | ||
| 3800 | |||
| 3801 | It it safe to pass null as buffer and/or allocation. | ||
| 3802 | */ | ||
| 3803 | VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( | ||
| 3804 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3805 | VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer, | ||
| 3806 | VmaAllocation VMA_NULLABLE allocation); | ||
| 3807 | |||
| 3808 | /// Function similar to vmaCreateBuffer(). | ||
| 3809 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( | ||
| 3810 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3811 | const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, | ||
| 3812 | const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, | ||
| 3813 | VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage, | ||
| 3814 | VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, | ||
| 3815 | VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); | ||
| 3816 | |||
| 3817 | /** \brief Destroys Vulkan image and frees allocated memory. | ||
| 3818 | |||
| 3819 | This is just a convenience function equivalent to: | ||
| 3820 | |||
| 3821 | \code | ||
| 3822 | vkDestroyImage(device, image, allocationCallbacks); | ||
| 3823 | vmaFreeMemory(allocator, allocation); | ||
| 3824 | \endcode | ||
| 3825 | |||
| 3826 | It it safe to pass null as image and/or allocation. | ||
| 3827 | */ | ||
| 3828 | VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( | ||
| 3829 | VmaAllocator VMA_NOT_NULL allocator, | ||
| 3830 | VkImage VMA_NULLABLE_NON_DISPATCHABLE image, | ||
| 3831 | VmaAllocation VMA_NULLABLE allocation); | ||
| 3832 | |||
| 3833 | #ifdef __cplusplus | ||
| 3834 | } | ||
| 3835 | #endif | ||
| 3836 | |||
| 3837 | #endif // AMD_VULKAN_MEMORY_ALLOCATOR_H | ||
| 3838 | |||
| 3839 | // For Visual Studio IntelliSense. | ||
| 3840 | #if defined(__cplusplus) && defined(__INTELLISENSE__) | ||
| 3841 | #define VMA_IMPLEMENTATION | ||
| 3842 | #endif | ||
| 3843 | |||
| 3844 | #ifdef VMA_IMPLEMENTATION | ||
| 3845 | #undef VMA_IMPLEMENTATION | ||
| 3846 | |||
| 3847 | #include <cstdint> | ||
| 3848 | #include <cstdlib> | ||
| 3849 | #include <cstring> | ||
| 3850 | #include <utility> | ||
| 3851 | |||
| 3852 | /******************************************************************************* | ||
| 3853 | CONFIGURATION SECTION | ||
| 3854 | |||
| 3855 | Define some of these macros before each #include of this header or change them | ||
| 3856 | here if you need other then default behavior depending on your environment. | ||
| 3857 | */ | ||
| 3858 | |||
| 3859 | /* | ||
| 3860 | Define this macro to 1 to make the library fetch pointers to Vulkan functions | ||
| 3861 | internally, like: | ||
| 3862 | |||
| 3863 | vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; | ||
| 3864 | */ | ||
| 3865 | #if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES) | ||
| 3866 | #define VMA_STATIC_VULKAN_FUNCTIONS 1 | ||
| 3867 | #endif | ||
| 3868 | |||
| 3869 | /* | ||
| 3870 | Define this macro to 1 to make the library fetch pointers to Vulkan functions | ||
| 3871 | internally, like: | ||
| 3872 | |||
| 3873 | vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(m_hDevice, vkAllocateMemory); | ||
| 3874 | */ | ||
| 3875 | #if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS) | ||
| 3876 | #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1 | ||
| 3877 | #endif | ||
| 3878 | |||
| 3879 | // Define this macro to 1 to make the library use STL containers instead of its own implementation. | ||
| 3880 | //#define VMA_USE_STL_CONTAINERS 1 | ||
| 3881 | |||
| 3882 | /* Set this macro to 1 to make the library including and using STL containers: | ||
| 3883 | std::pair, std::vector, std::list, std::unordered_map. | ||
| 3884 | |||
| 3885 | Set it to 0 or undefined to make the library using its own implementation of | ||
| 3886 | the containers. | ||
| 3887 | */ | ||
| 3888 | #if VMA_USE_STL_CONTAINERS | ||
| 3889 | #define VMA_USE_STL_VECTOR 1 | ||
| 3890 | #define VMA_USE_STL_UNORDERED_MAP 1 | ||
| 3891 | #define VMA_USE_STL_LIST 1 | ||
| 3892 | #endif | ||
| 3893 | |||
| 3894 | #ifndef VMA_USE_STL_SHARED_MUTEX | ||
| 3895 | // Compiler conforms to C++17. | ||
| 3896 | #if __cplusplus >= 201703L | ||
| 3897 | #define VMA_USE_STL_SHARED_MUTEX 1 | ||
| 3898 | // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus | ||
| 3899 | // Otherwise it's always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2. | ||
| 3900 | // See: https://blogs.msdn.microsoft.com/vcblog/2018/04/09/msvc-now-correctly-reports-__cplusplus/ | ||
| 3901 | #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L | ||
| 3902 | #define VMA_USE_STL_SHARED_MUTEX 1 | ||
| 3903 | #else | ||
| 3904 | #define VMA_USE_STL_SHARED_MUTEX 0 | ||
| 3905 | #endif | ||
| 3906 | #endif | ||
| 3907 | |||
| 3908 | /* | ||
| 3909 | THESE INCLUDES ARE NOT ENABLED BY DEFAULT. | ||
| 3910 | Library has its own container implementation. | ||
| 3911 | */ | ||
| 3912 | #if VMA_USE_STL_VECTOR | ||
| 3913 | #include <vector> | ||
| 3914 | #endif | ||
| 3915 | |||
| 3916 | #if VMA_USE_STL_UNORDERED_MAP | ||
| 3917 | #include <unordered_map> | ||
| 3918 | #endif | ||
| 3919 | |||
| 3920 | #if VMA_USE_STL_LIST | ||
| 3921 | #include <list> | ||
| 3922 | #endif | ||
| 3923 | |||
| 3924 | /* | ||
| 3925 | Following headers are used in this CONFIGURATION section only, so feel free to | ||
| 3926 | remove them if not needed. | ||
| 3927 | */ | ||
| 3928 | #include <cassert> // for assert | ||
| 3929 | #include <algorithm> // for min, max | ||
| 3930 | #include <mutex> | ||
| 3931 | |||
| 3932 | #ifndef VMA_NULL | ||
| 3933 | // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0. | ||
| 3934 | #define VMA_NULL nullptr | ||
| 3935 | #endif | ||
| 3936 | |||
| 3937 | #if defined(__ANDROID_API__) && (__ANDROID_API__ < 16) | ||
| 3938 | #include <cstdlib> | ||
| 3939 | void* aligned_alloc(size_t alignment, size_t size) | ||
| 3940 | { | ||
| 3941 | // alignment must be >= sizeof(void*) | ||
| 3942 | if (alignment < sizeof(void*)) | ||
| 3943 | { | ||
| 3944 | alignment = sizeof(void*); | ||
| 3945 | } | ||
| 3946 | |||
| 3947 | return memalign(alignment, size); | ||
| 3948 | } | ||
| 3949 | #elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)) | ||
| 3950 | #include <cstdlib> | ||
| 3951 | void* aligned_alloc(size_t alignment, size_t size) | ||
| 3952 | { | ||
| 3953 | // alignment must be >= sizeof(void*) | ||
| 3954 | if (alignment < sizeof(void*)) | ||
| 3955 | { | ||
| 3956 | alignment = sizeof(void*); | ||
| 3957 | } | ||
| 3958 | |||
| 3959 | void* pointer; | ||
| 3960 | if (posix_memalign(&pointer, alignment, size) == 0) | ||
| 3961 | return pointer; | ||
| 3962 | return VMA_NULL; | ||
| 3963 | } | ||
| 3964 | #endif | ||
| 3965 | |||
| 3966 | // If your compiler is not compatible with C++11 and definition of | ||
| 3967 | // aligned_alloc() function is missing, uncommeting following line may help: | ||
| 3968 | |||
| 3969 | //#include <malloc.h> | ||
| 3970 | |||
| 3971 | // Normal assert to check for programmer's errors, especially in Debug configuration. | ||
| 3972 | #ifndef VMA_ASSERT | ||
| 3973 | #ifdef NDEBUG | ||
| 3974 | #define VMA_ASSERT(expr) | ||
| 3975 | #else | ||
| 3976 | #define VMA_ASSERT(expr) assert(expr) | ||
| 3977 | #endif | ||
| 3978 | #endif | ||
| 3979 | |||
| 3980 | // Assert that will be called very often, like inside data structures e.g. operator[]. | ||
| 3981 | // Making it non-empty can make program slow. | ||
| 3982 | #ifndef VMA_HEAVY_ASSERT | ||
| 3983 | #ifdef NDEBUG | ||
| 3984 | #define VMA_HEAVY_ASSERT(expr) | ||
| 3985 | #else | ||
| 3986 | #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr) | ||
| 3987 | #endif | ||
| 3988 | #endif | ||
| 3989 | |||
| 3990 | #ifndef VMA_ALIGN_OF | ||
| 3991 | #define VMA_ALIGN_OF(type) (__alignof(type)) | ||
| 3992 | #endif | ||
| 3993 | |||
| 3994 | #ifndef VMA_SYSTEM_ALIGNED_MALLOC | ||
| 3995 | #if defined(_WIN32) | ||
| 3996 | #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (_aligned_malloc((size), (alignment))) | ||
| 3997 | #else | ||
| 3998 | #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (aligned_alloc((alignment), (size) )) | ||
| 3999 | #endif | ||
| 4000 | #endif | ||
| 4001 | |||
| 4002 | #ifndef VMA_SYSTEM_FREE | ||
| 4003 | #if defined(_WIN32) | ||
| 4004 | #define VMA_SYSTEM_FREE(ptr) _aligned_free(ptr) | ||
| 4005 | #else | ||
| 4006 | #define VMA_SYSTEM_FREE(ptr) free(ptr) | ||
| 4007 | #endif | ||
| 4008 | #endif | ||
| 4009 | |||
| 4010 | #ifndef VMA_MIN | ||
| 4011 | #define VMA_MIN(v1, v2) (std::min((v1), (v2))) | ||
| 4012 | #endif | ||
| 4013 | |||
| 4014 | #ifndef VMA_MAX | ||
| 4015 | #define VMA_MAX(v1, v2) (std::max((v1), (v2))) | ||
| 4016 | #endif | ||
| 4017 | |||
| 4018 | #ifndef VMA_SWAP | ||
| 4019 | #define VMA_SWAP(v1, v2) std::swap((v1), (v2)) | ||
| 4020 | #endif | ||
| 4021 | |||
| 4022 | #ifndef VMA_SORT | ||
| 4023 | #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp) | ||
| 4024 | #endif | ||
| 4025 | |||
| 4026 | #ifndef VMA_DEBUG_LOG | ||
| 4027 | #define VMA_DEBUG_LOG(format, ...) | ||
| 4028 | /* | ||
| 4029 | #define VMA_DEBUG_LOG(format, ...) do { \ | ||
| 4030 | printf(format, __VA_ARGS__); \ | ||
| 4031 | printf("\n"); \ | ||
| 4032 | } while(false) | ||
| 4033 | */ | ||
| 4034 | #endif | ||
| 4035 | |||
| 4036 | // Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString. | ||
| 4037 | #if VMA_STATS_STRING_ENABLED | ||
| 4038 | static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num) | ||
| 4039 | { | ||
| 4040 | snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num)); | ||
| 4041 | } | ||
| 4042 | static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num) | ||
| 4043 | { | ||
| 4044 | snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num)); | ||
| 4045 | } | ||
| 4046 | static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr) | ||
| 4047 | { | ||
| 4048 | ✗ | snprintf(outStr, strLen, "%p", ptr); | |
| 4049 | ✗ | } | |
| 4050 | #endif | ||
| 4051 | |||
| 4052 | #ifndef VMA_MUTEX | ||
| 4053 | class VmaMutex | ||
| 4054 | { | ||
| 4055 | public: | ||
| 4056 | void Lock() { m_Mutex.lock(); } | ||
| 4057 | void Unlock() { m_Mutex.unlock(); } | ||
| 4058 | bool TryLock() { return m_Mutex.try_lock(); } | ||
| 4059 | private: | ||
| 4060 | std::mutex m_Mutex; | ||
| 4061 | }; | ||
| 4062 | #define VMA_MUTEX VmaMutex | ||
| 4063 | #endif | ||
| 4064 | |||
| 4065 | // Read-write mutex, where "read" is shared access, "write" is exclusive access. | ||
| 4066 | #ifndef VMA_RW_MUTEX | ||
| 4067 | #if VMA_USE_STL_SHARED_MUTEX | ||
| 4068 | // Use std::shared_mutex from C++17. | ||
| 4069 | #include <shared_mutex> | ||
| 4070 | class VmaRWMutex | ||
| 4071 | { | ||
| 4072 | public: | ||
| 4073 | void LockRead() { m_Mutex.lock_shared(); } | ||
| 4074 | void UnlockRead() { m_Mutex.unlock_shared(); } | ||
| 4075 | bool TryLockRead() { return m_Mutex.try_lock_shared(); } | ||
| 4076 | void LockWrite() { m_Mutex.lock(); } | ||
| 4077 | void UnlockWrite() { m_Mutex.unlock(); } | ||
| 4078 | bool TryLockWrite() { return m_Mutex.try_lock(); } | ||
| 4079 | private: | ||
| 4080 | std::shared_mutex m_Mutex; | ||
| 4081 | }; | ||
| 4082 | #define VMA_RW_MUTEX VmaRWMutex | ||
| 4083 | #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600 | ||
| 4084 | // Use SRWLOCK from WinAPI. | ||
| 4085 | // Minimum supported client = Windows Vista, server = Windows Server 2008. | ||
| 4086 | class VmaRWMutex | ||
| 4087 | { | ||
| 4088 | public: | ||
| 4089 | VmaRWMutex() { InitializeSRWLock(&m_Lock); } | ||
| 4090 | void LockRead() { AcquireSRWLockShared(&m_Lock); } | ||
| 4091 | void UnlockRead() { ReleaseSRWLockShared(&m_Lock); } | ||
| 4092 | bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; } | ||
| 4093 | void LockWrite() { AcquireSRWLockExclusive(&m_Lock); } | ||
| 4094 | void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); } | ||
| 4095 | bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; } | ||
| 4096 | private: | ||
| 4097 | SRWLOCK m_Lock; | ||
| 4098 | }; | ||
| 4099 | #define VMA_RW_MUTEX VmaRWMutex | ||
| 4100 | #else | ||
| 4101 | // Less efficient fallback: Use normal mutex. | ||
| 4102 | class VmaRWMutex | ||
| 4103 | { | ||
| 4104 | public: | ||
| 4105 | void LockRead() { m_Mutex.Lock(); } | ||
| 4106 | void UnlockRead() { m_Mutex.Unlock(); } | ||
| 4107 | bool TryLockRead() { return m_Mutex.TryLock(); } | ||
| 4108 | void LockWrite() { m_Mutex.Lock(); } | ||
| 4109 | void UnlockWrite() { m_Mutex.Unlock(); } | ||
| 4110 | bool TryLockWrite() { return m_Mutex.TryLock(); } | ||
| 4111 | private: | ||
| 4112 | VMA_MUTEX m_Mutex; | ||
| 4113 | }; | ||
| 4114 | #define VMA_RW_MUTEX VmaRWMutex | ||
| 4115 | #endif // #if VMA_USE_STL_SHARED_MUTEX | ||
| 4116 | #endif // #ifndef VMA_RW_MUTEX | ||
| 4117 | |||
| 4118 | /* | ||
| 4119 | If providing your own implementation, you need to implement a subset of std::atomic. | ||
| 4120 | */ | ||
| 4121 | #ifndef VMA_ATOMIC_UINT32 | ||
| 4122 | #include <atomic> | ||
| 4123 | #define VMA_ATOMIC_UINT32 std::atomic<uint32_t> | ||
| 4124 | #endif | ||
| 4125 | |||
| 4126 | #ifndef VMA_ATOMIC_UINT64 | ||
| 4127 | #include <atomic> | ||
| 4128 | #define VMA_ATOMIC_UINT64 std::atomic<uint64_t> | ||
| 4129 | #endif | ||
| 4130 | |||
| 4131 | #ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY | ||
| 4132 | /** | ||
| 4133 | Every allocation will have its own memory block. | ||
| 4134 | Define to 1 for debugging purposes only. | ||
| 4135 | */ | ||
| 4136 | #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0) | ||
| 4137 | #endif | ||
| 4138 | |||
| 4139 | #ifndef VMA_DEBUG_ALIGNMENT | ||
| 4140 | /** | ||
| 4141 | Minimum alignment of all allocations, in bytes. | ||
| 4142 | Set to more than 1 for debugging purposes only. Must be power of two. | ||
| 4143 | */ | ||
| 4144 | #define VMA_DEBUG_ALIGNMENT (1) | ||
| 4145 | #endif | ||
| 4146 | |||
| 4147 | #ifndef VMA_DEBUG_MARGIN | ||
| 4148 | /** | ||
| 4149 | Minimum margin before and after every allocation, in bytes. | ||
| 4150 | Set nonzero for debugging purposes only. | ||
| 4151 | */ | ||
| 4152 | #define VMA_DEBUG_MARGIN (0) | ||
| 4153 | #endif | ||
| 4154 | |||
| 4155 | #ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS | ||
| 4156 | /** | ||
| 4157 | Define this macro to 1 to automatically fill new allocations and destroyed | ||
| 4158 | allocations with some bit pattern. | ||
| 4159 | */ | ||
| 4160 | #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0) | ||
| 4161 | #endif | ||
| 4162 | |||
| 4163 | #ifndef VMA_DEBUG_DETECT_CORRUPTION | ||
| 4164 | /** | ||
| 4165 | Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to | ||
| 4166 | enable writing magic value to the margin before and after every allocation and | ||
| 4167 | validating it, so that memory corruptions (out-of-bounds writes) are detected. | ||
| 4168 | */ | ||
| 4169 | #define VMA_DEBUG_DETECT_CORRUPTION (0) | ||
| 4170 | #endif | ||
| 4171 | |||
| 4172 | #ifndef VMA_DEBUG_GLOBAL_MUTEX | ||
| 4173 | /** | ||
| 4174 | Set this to 1 for debugging purposes only, to enable single mutex protecting all | ||
| 4175 | entry calls to the library. Can be useful for debugging multithreading issues. | ||
| 4176 | */ | ||
| 4177 | #define VMA_DEBUG_GLOBAL_MUTEX (0) | ||
| 4178 | #endif | ||
| 4179 | |||
| 4180 | #ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY | ||
| 4181 | /** | ||
| 4182 | Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity. | ||
| 4183 | Set to more than 1 for debugging purposes only. Must be power of two. | ||
| 4184 | */ | ||
| 4185 | #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1) | ||
| 4186 | #endif | ||
| 4187 | |||
| 4188 | #ifndef VMA_SMALL_HEAP_MAX_SIZE | ||
| 4189 | /// Maximum size of a memory heap in Vulkan to consider it "small". | ||
| 4190 | #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024) | ||
| 4191 | #endif | ||
| 4192 | |||
| 4193 | #ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE | ||
| 4194 | /// Default size of a block allocated as single VkDeviceMemory from a "large" heap. | ||
| 4195 | #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024) | ||
| 4196 | #endif | ||
| 4197 | |||
| 4198 | #ifndef VMA_CLASS_NO_COPY | ||
| 4199 | #define VMA_CLASS_NO_COPY(className) \ | ||
| 4200 | private: \ | ||
| 4201 | className(const className&) = delete; \ | ||
| 4202 | className& operator=(const className&) = delete; | ||
| 4203 | #endif | ||
| 4204 | |||
| 4205 | static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX; | ||
| 4206 | |||
| 4207 | // Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F. | ||
| 4208 | static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666; | ||
| 4209 | |||
| 4210 | static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC; | ||
| 4211 | static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF; | ||
| 4212 | |||
| 4213 | /******************************************************************************* | ||
| 4214 | END OF CONFIGURATION | ||
| 4215 | */ | ||
| 4216 | |||
| 4217 | // # Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants. | ||
| 4218 | |||
| 4219 | static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040; | ||
| 4220 | static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080; | ||
| 4221 | static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000; | ||
| 4222 | |||
| 4223 | static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u; | ||
| 4224 | |||
| 4225 | static VkAllocationCallbacks VmaEmptyAllocationCallbacks = { | ||
| 4226 | VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL }; | ||
| 4227 | |||
| 4228 | // Returns number of bits set to 1 in (v). | ||
| 4229 | static inline uint32_t VmaCountBitsSet(uint32_t v) | ||
| 4230 | { | ||
| 4231 | ✗ | uint32_t c = v - ((v >> 1) & 0x55555555); | |
| 4232 | ✗ | c = ((c >> 2) & 0x33333333) + (c & 0x33333333); | |
| 4233 | ✗ | c = ((c >> 4) + c) & 0x0F0F0F0F; | |
| 4234 | ✗ | c = ((c >> 8) + c) & 0x00FF00FF; | |
| 4235 | ✗ | c = ((c >> 16) + c) & 0x0000FFFF; | |
| 4236 | ✗ | return c; | |
| 4237 | } | ||
| 4238 | |||
| 4239 | // Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16. | ||
| 4240 | // Use types like uint32_t, uint64_t as T. | ||
| 4241 | template <typename T> | ||
| 4242 | static inline T VmaAlignUp(T val, T align) | ||
| 4243 | { | ||
| 4244 | ✗ | return (val + align - 1) / align * align; | |
| 4245 | } | ||
| 4246 | // Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8. | ||
| 4247 | // Use types like uint32_t, uint64_t as T. | ||
| 4248 | template <typename T> | ||
| 4249 | static inline T VmaAlignDown(T val, T align) | ||
| 4250 | { | ||
| 4251 | ✗ | return val / align * align; | |
| 4252 | } | ||
| 4253 | |||
| 4254 | // Division with mathematical rounding to nearest number. | ||
| 4255 | template <typename T> | ||
| 4256 | static inline T VmaRoundDiv(T x, T y) | ||
| 4257 | { | ||
| 4258 | ✗ | return (x + (y / (T)2)) / y; | |
| 4259 | } | ||
| 4260 | |||
| 4261 | /* | ||
| 4262 | Returns true if given number is a power of two. | ||
| 4263 | T must be unsigned integer number or signed integer but always nonnegative. | ||
| 4264 | For 0 returns true. | ||
| 4265 | */ | ||
| 4266 | template <typename T> | ||
| 4267 | inline bool VmaIsPow2(T x) | ||
| 4268 | { | ||
| 4269 | ✗ | return (x & (x - 1)) == 0; | |
| 4270 | } | ||
| 4271 | |||
| 4272 | // Returns smallest power of 2 greater or equal to v. | ||
| 4273 | static inline uint32_t VmaNextPow2(uint32_t v) | ||
| 4274 | { | ||
| 4275 | v--; | ||
| 4276 | v |= v >> 1; | ||
| 4277 | v |= v >> 2; | ||
| 4278 | v |= v >> 4; | ||
| 4279 | v |= v >> 8; | ||
| 4280 | v |= v >> 16; | ||
| 4281 | v++; | ||
| 4282 | return v; | ||
| 4283 | } | ||
| 4284 | static inline uint64_t VmaNextPow2(uint64_t v) | ||
| 4285 | { | ||
| 4286 | v--; | ||
| 4287 | v |= v >> 1; | ||
| 4288 | v |= v >> 2; | ||
| 4289 | v |= v >> 4; | ||
| 4290 | v |= v >> 8; | ||
| 4291 | v |= v >> 16; | ||
| 4292 | v |= v >> 32; | ||
| 4293 | v++; | ||
| 4294 | return v; | ||
| 4295 | } | ||
| 4296 | |||
| 4297 | // Returns largest power of 2 less or equal to v. | ||
| 4298 | static inline uint32_t VmaPrevPow2(uint32_t v) | ||
| 4299 | { | ||
| 4300 | v |= v >> 1; | ||
| 4301 | v |= v >> 2; | ||
| 4302 | v |= v >> 4; | ||
| 4303 | v |= v >> 8; | ||
| 4304 | v |= v >> 16; | ||
| 4305 | v = v ^ (v >> 1); | ||
| 4306 | return v; | ||
| 4307 | } | ||
| 4308 | static inline uint64_t VmaPrevPow2(uint64_t v) | ||
| 4309 | { | ||
| 4310 | ✗ | v |= v >> 1; | |
| 4311 | ✗ | v |= v >> 2; | |
| 4312 | ✗ | v |= v >> 4; | |
| 4313 | ✗ | v |= v >> 8; | |
| 4314 | ✗ | v |= v >> 16; | |
| 4315 | ✗ | v |= v >> 32; | |
| 4316 | ✗ | v = v ^ (v >> 1); | |
| 4317 | ✗ | return v; | |
| 4318 | } | ||
| 4319 | |||
| 4320 | static inline bool VmaStrIsEmpty(const char* pStr) | ||
| 4321 | { | ||
| 4322 | ✗ | return pStr == VMA_NULL || *pStr == '\0'; | |
| 4323 | } | ||
| 4324 | |||
| 4325 | #if VMA_STATS_STRING_ENABLED | ||
| 4326 | |||
| 4327 | static const char* VmaAlgorithmToStr(uint32_t algorithm) | ||
| 4328 | { | ||
| 4329 | ✗ | switch (algorithm) | |
| 4330 | { | ||
| 4331 | ✗ | case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: | |
| 4332 | ✗ | return "Linear"; | |
| 4333 | ✗ | case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: | |
| 4334 | ✗ | return "Buddy"; | |
| 4335 | ✗ | case 0: | |
| 4336 | ✗ | return "Default"; | |
| 4337 | ✗ | default: | |
| 4338 | ✗ | VMA_ASSERT(0); | |
| 4339 | return ""; | ||
| 4340 | } | ||
| 4341 | } | ||
| 4342 | |||
| 4343 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 4344 | |||
| 4345 | #ifndef VMA_SORT | ||
| 4346 | |||
| 4347 | template<typename Iterator, typename Compare> | ||
| 4348 | Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp) | ||
| 4349 | { | ||
| 4350 | Iterator centerValue = end; --centerValue; | ||
| 4351 | Iterator insertIndex = beg; | ||
| 4352 | for (Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex) | ||
| 4353 | { | ||
| 4354 | if (cmp(*memTypeIndex, *centerValue)) | ||
| 4355 | { | ||
| 4356 | if (insertIndex != memTypeIndex) | ||
| 4357 | { | ||
| 4358 | VMA_SWAP(*memTypeIndex, *insertIndex); | ||
| 4359 | } | ||
| 4360 | ++insertIndex; | ||
| 4361 | } | ||
| 4362 | } | ||
| 4363 | if (insertIndex != centerValue) | ||
| 4364 | { | ||
| 4365 | VMA_SWAP(*insertIndex, *centerValue); | ||
| 4366 | } | ||
| 4367 | return insertIndex; | ||
| 4368 | } | ||
| 4369 | |||
| 4370 | template<typename Iterator, typename Compare> | ||
| 4371 | void VmaQuickSort(Iterator beg, Iterator end, Compare cmp) | ||
| 4372 | { | ||
| 4373 | if (beg < end) | ||
| 4374 | { | ||
| 4375 | Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp); | ||
| 4376 | VmaQuickSort<Iterator, Compare>(beg, it, cmp); | ||
| 4377 | VmaQuickSort<Iterator, Compare>(it + 1, end, cmp); | ||
| 4378 | } | ||
| 4379 | } | ||
| 4380 | |||
| 4381 | #define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp) | ||
| 4382 | |||
| 4383 | #endif // #ifndef VMA_SORT | ||
| 4384 | |||
| 4385 | /* | ||
| 4386 | Returns true if two memory blocks occupy overlapping pages. | ||
| 4387 | ResourceA must be in less memory offset than ResourceB. | ||
| 4388 | |||
| 4389 | Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)" | ||
| 4390 | chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity". | ||
| 4391 | */ | ||
| 4392 | static inline bool VmaBlocksOnSamePage( | ||
| 4393 | VkDeviceSize resourceAOffset, | ||
| 4394 | VkDeviceSize resourceASize, | ||
| 4395 | VkDeviceSize resourceBOffset, | ||
| 4396 | VkDeviceSize pageSize) | ||
| 4397 | { | ||
| 4398 | ✗ | VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0); | |
| 4399 | ✗ | VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1; | |
| 4400 | ✗ | VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1); | |
| 4401 | ✗ | VkDeviceSize resourceBStart = resourceBOffset; | |
| 4402 | ✗ | VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1); | |
| 4403 | ✗ | return resourceAEndPage == resourceBStartPage; | |
| 4404 | } | ||
| 4405 | |||
| 4406 | enum VmaSuballocationType | ||
| 4407 | { | ||
| 4408 | VMA_SUBALLOCATION_TYPE_FREE = 0, | ||
| 4409 | VMA_SUBALLOCATION_TYPE_UNKNOWN = 1, | ||
| 4410 | VMA_SUBALLOCATION_TYPE_BUFFER = 2, | ||
| 4411 | VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3, | ||
| 4412 | VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4, | ||
| 4413 | VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5, | ||
| 4414 | VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF | ||
| 4415 | }; | ||
| 4416 | |||
| 4417 | /* | ||
| 4418 | Returns true if given suballocation types could conflict and must respect | ||
| 4419 | VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer | ||
| 4420 | or linear image and another one is optimal image. If type is unknown, behave | ||
| 4421 | conservatively. | ||
| 4422 | */ | ||
| 4423 | static inline bool VmaIsBufferImageGranularityConflict( | ||
| 4424 | VmaSuballocationType suballocType1, | ||
| 4425 | VmaSuballocationType suballocType2) | ||
| 4426 | { | ||
| 4427 | ✗ | if (suballocType1 > suballocType2) | |
| 4428 | { | ||
| 4429 | ✗ | VMA_SWAP(suballocType1, suballocType2); | |
| 4430 | } | ||
| 4431 | |||
| 4432 | ✗ | switch (suballocType1) | |
| 4433 | { | ||
| 4434 | ✗ | case VMA_SUBALLOCATION_TYPE_FREE: | |
| 4435 | ✗ | return false; | |
| 4436 | ✗ | case VMA_SUBALLOCATION_TYPE_UNKNOWN: | |
| 4437 | ✗ | return true; | |
| 4438 | ✗ | case VMA_SUBALLOCATION_TYPE_BUFFER: | |
| 4439 | return | ||
| 4440 | ✗ | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || | |
| 4441 | ✗ | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; | |
| 4442 | ✗ | case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN: | |
| 4443 | return | ||
| 4444 | ✗ | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || | |
| 4445 | ✗ | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR || | |
| 4446 | ✗ | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; | |
| 4447 | ✗ | case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR: | |
| 4448 | return | ||
| 4449 | ✗ | suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; | |
| 4450 | ✗ | case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL: | |
| 4451 | ✗ | return false; | |
| 4452 | ✗ | default: | |
| 4453 | ✗ | VMA_ASSERT(0); | |
| 4454 | return true; | ||
| 4455 | } | ||
| 4456 | } | ||
| 4457 | |||
| 4458 | static void VmaWriteMagicValue(void* pData, VkDeviceSize offset) | ||
| 4459 | { | ||
| 4460 | #if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION | ||
| 4461 | uint32_t* pDst = (uint32_t*)((char*)pData + offset); | ||
| 4462 | const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); | ||
| 4463 | for (size_t i = 0; i < numberCount; ++i, ++pDst) | ||
| 4464 | { | ||
| 4465 | *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE; | ||
| 4466 | } | ||
| 4467 | #else | ||
| 4468 | // no-op | ||
| 4469 | #endif | ||
| 4470 | ✗ | } | |
| 4471 | |||
| 4472 | static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset) | ||
| 4473 | { | ||
| 4474 | #if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION | ||
| 4475 | const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset); | ||
| 4476 | const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); | ||
| 4477 | for (size_t i = 0; i < numberCount; ++i, ++pSrc) | ||
| 4478 | { | ||
| 4479 | if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) | ||
| 4480 | { | ||
| 4481 | return false; | ||
| 4482 | } | ||
| 4483 | } | ||
| 4484 | #endif | ||
| 4485 | ✗ | return true; | |
| 4486 | } | ||
| 4487 | |||
| 4488 | /* | ||
| 4489 | Fills structure with parameters of an example buffer to be used for transfers | ||
| 4490 | during GPU memory defragmentation. | ||
| 4491 | */ | ||
| 4492 | static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo) | ||
| 4493 | { | ||
| 4494 | ✗ | memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo)); | |
| 4495 | ✗ | outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; | |
| 4496 | ✗ | outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; | |
| 4497 | ✗ | outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size. | |
| 4498 | ✗ | } | |
| 4499 | |||
| 4500 | // Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope). | ||
| 4501 | struct VmaMutexLock | ||
| 4502 | { | ||
| 4503 | VMA_CLASS_NO_COPY(VmaMutexLock) | ||
| 4504 | public: | ||
| 4505 | VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) : | ||
| 4506 | ✗ | m_pMutex(useMutex ? &mutex : VMA_NULL) | |
| 4507 | { | ||
| 4508 | ✗ | if (m_pMutex) { m_pMutex->Lock(); } | |
| 4509 | ✗ | } | |
| 4510 | ~VmaMutexLock() | ||
| 4511 | { | ||
| 4512 | ✗ | if (m_pMutex) { m_pMutex->Unlock(); } | |
| 4513 | ✗ | } | |
| 4514 | private: | ||
| 4515 | VMA_MUTEX* m_pMutex; | ||
| 4516 | }; | ||
| 4517 | |||
| 4518 | // Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading. | ||
| 4519 | struct VmaMutexLockRead | ||
| 4520 | { | ||
| 4521 | VMA_CLASS_NO_COPY(VmaMutexLockRead) | ||
| 4522 | public: | ||
| 4523 | VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) : | ||
| 4524 | ✗ | m_pMutex(useMutex ? &mutex : VMA_NULL) | |
| 4525 | { | ||
| 4526 | ✗ | if (m_pMutex) { m_pMutex->LockRead(); } | |
| 4527 | ✗ | } | |
| 4528 | ~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } } | ||
| 4529 | private: | ||
| 4530 | VMA_RW_MUTEX* m_pMutex; | ||
| 4531 | }; | ||
| 4532 | |||
| 4533 | // Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing. | ||
| 4534 | struct VmaMutexLockWrite | ||
| 4535 | { | ||
| 4536 | VMA_CLASS_NO_COPY(VmaMutexLockWrite) | ||
| 4537 | public: | ||
| 4538 | VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) : | ||
| 4539 | ✗ | m_pMutex(useMutex ? &mutex : VMA_NULL) | |
| 4540 | { | ||
| 4541 | ✗ | if (m_pMutex) { m_pMutex->LockWrite(); } | |
| 4542 | ✗ | } | |
| 4543 | ~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } } | ||
| 4544 | private: | ||
| 4545 | VMA_RW_MUTEX* m_pMutex; | ||
| 4546 | }; | ||
| 4547 | |||
| 4548 | #if VMA_DEBUG_GLOBAL_MUTEX | ||
| 4549 | static VMA_MUTEX gDebugGlobalMutex; | ||
| 4550 | #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true); | ||
| 4551 | #else | ||
| 4552 | #define VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 4553 | #endif | ||
| 4554 | |||
| 4555 | // Minimum size of a free suballocation to register it in the free suballocation collection. | ||
| 4556 | static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16; | ||
| 4557 | |||
| 4558 | /* | ||
| 4559 | Performs binary search and returns iterator to first element that is greater or | ||
| 4560 | equal to (key), according to comparison (cmp). | ||
| 4561 | |||
| 4562 | Cmp should return true if first argument is less than second argument. | ||
| 4563 | |||
| 4564 | Returned value is the found element, if present in the collection or place where | ||
| 4565 | new element with value (key) should be inserted. | ||
| 4566 | */ | ||
| 4567 | template <typename CmpLess, typename IterT, typename KeyT> | ||
| 4568 | static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp) | ||
| 4569 | { | ||
| 4570 | ✗ | size_t down = 0, up = (end - beg); | |
| 4571 | ✗ | while (down < up) | |
| 4572 | { | ||
| 4573 | ✗ | const size_t mid = (down + up) / 2; | |
| 4574 | ✗ | if (cmp(*(beg + mid), key)) | |
| 4575 | { | ||
| 4576 | ✗ | down = mid + 1; | |
| 4577 | } | ||
| 4578 | else | ||
| 4579 | { | ||
| 4580 | ✗ | up = mid; | |
| 4581 | } | ||
| 4582 | } | ||
| 4583 | ✗ | return beg + down; | |
| 4584 | } | ||
| 4585 | |||
| 4586 | template<typename CmpLess, typename IterT, typename KeyT> | ||
| 4587 | IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp) | ||
| 4588 | { | ||
| 4589 | ✗ | IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>( | |
| 4590 | beg, end, value, cmp); | ||
| 4591 | ✗ | if (it == end || | |
| 4592 | ✗ | (!cmp(*it, value) && !cmp(value, *it))) | |
| 4593 | { | ||
| 4594 | ✗ | return it; | |
| 4595 | } | ||
| 4596 | ✗ | return end; | |
| 4597 | } | ||
| 4598 | |||
| 4599 | /* | ||
| 4600 | Returns true if all pointers in the array are not-null and unique. | ||
| 4601 | Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT. | ||
| 4602 | T must be pointer type, e.g. VmaAllocation, VmaPool. | ||
| 4603 | */ | ||
| 4604 | template<typename T> | ||
| 4605 | static bool VmaValidatePointerArray(uint32_t count, const T* arr) | ||
| 4606 | { | ||
| 4607 | for (uint32_t i = 0; i < count; ++i) | ||
| 4608 | { | ||
| 4609 | const T iPtr = arr[i]; | ||
| 4610 | if (iPtr == VMA_NULL) | ||
| 4611 | { | ||
| 4612 | return false; | ||
| 4613 | } | ||
| 4614 | for (uint32_t j = i + 1; j < count; ++j) | ||
| 4615 | { | ||
| 4616 | if (iPtr == arr[j]) | ||
| 4617 | { | ||
| 4618 | return false; | ||
| 4619 | } | ||
| 4620 | } | ||
| 4621 | } | ||
| 4622 | return true; | ||
| 4623 | } | ||
| 4624 | |||
| 4625 | template<typename MainT, typename NewT> | ||
| 4626 | static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct) | ||
| 4627 | { | ||
| 4628 | ✗ | newStruct->pNext = mainStruct->pNext; | |
| 4629 | ✗ | mainStruct->pNext = newStruct; | |
| 4630 | ✗ | } | |
| 4631 | |||
| 4632 | //////////////////////////////////////////////////////////////////////////////// | ||
| 4633 | // Memory allocation | ||
| 4634 | |||
| 4635 | static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment) | ||
| 4636 | { | ||
| 4637 | ✗ | if ((pAllocationCallbacks != VMA_NULL) && | |
| 4638 | ✗ | (pAllocationCallbacks->pfnAllocation != VMA_NULL)) | |
| 4639 | { | ||
| 4640 | ✗ | return (*pAllocationCallbacks->pfnAllocation)( | |
| 4641 | ✗ | pAllocationCallbacks->pUserData, | |
| 4642 | size, | ||
| 4643 | alignment, | ||
| 4644 | ✗ | VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); | |
| 4645 | } | ||
| 4646 | else | ||
| 4647 | { | ||
| 4648 | ✗ | return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment); | |
| 4649 | } | ||
| 4650 | } | ||
| 4651 | |||
| 4652 | static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr) | ||
| 4653 | { | ||
| 4654 | ✗ | if ((pAllocationCallbacks != VMA_NULL) && | |
| 4655 | ✗ | (pAllocationCallbacks->pfnFree != VMA_NULL)) | |
| 4656 | { | ||
| 4657 | ✗ | (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr); | |
| 4658 | } | ||
| 4659 | else | ||
| 4660 | { | ||
| 4661 | ✗ | VMA_SYSTEM_FREE(ptr); | |
| 4662 | } | ||
| 4663 | ✗ | } | |
| 4664 | |||
| 4665 | template<typename T> | ||
| 4666 | static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks) | ||
| 4667 | { | ||
| 4668 | ✗ | return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T)); | |
| 4669 | } | ||
| 4670 | |||
| 4671 | template<typename T> | ||
| 4672 | static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count) | ||
| 4673 | { | ||
| 4674 | ✗ | return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T)); | |
| 4675 | } | ||
| 4676 | |||
| 4677 | #define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type) | ||
| 4678 | |||
| 4679 | #define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type) | ||
| 4680 | |||
| 4681 | template<typename T> | ||
| 4682 | static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr) | ||
| 4683 | { | ||
| 4684 | ✗ | ptr->~T(); | |
| 4685 | ✗ | VmaFree(pAllocationCallbacks, ptr); | |
| 4686 | ✗ | } | |
| 4687 | |||
| 4688 | template<typename T> | ||
| 4689 | static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count) | ||
| 4690 | { | ||
| 4691 | ✗ | if (ptr != VMA_NULL) | |
| 4692 | { | ||
| 4693 | ✗ | for (size_t i = count; i--; ) | |
| 4694 | { | ||
| 4695 | ✗ | ptr[i].~T(); | |
| 4696 | } | ||
| 4697 | ✗ | VmaFree(pAllocationCallbacks, ptr); | |
| 4698 | } | ||
| 4699 | ✗ | } | |
| 4700 | |||
| 4701 | static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr) | ||
| 4702 | { | ||
| 4703 | ✗ | if (srcStr != VMA_NULL) | |
| 4704 | { | ||
| 4705 | ✗ | const size_t len = strlen(srcStr); | |
| 4706 | ✗ | char* const result = vma_new_array(allocs, char, len + 1); | |
| 4707 | ✗ | memcpy(result, srcStr, len + 1); | |
| 4708 | ✗ | return result; | |
| 4709 | } | ||
| 4710 | else | ||
| 4711 | { | ||
| 4712 | ✗ | return VMA_NULL; | |
| 4713 | } | ||
| 4714 | } | ||
| 4715 | |||
| 4716 | static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str) | ||
| 4717 | { | ||
| 4718 | ✗ | if (str != VMA_NULL) | |
| 4719 | { | ||
| 4720 | ✗ | const size_t len = strlen(str); | |
| 4721 | ✗ | vma_delete_array(allocs, str, len + 1); | |
| 4722 | } | ||
| 4723 | ✗ | } | |
| 4724 | |||
| 4725 | // STL-compatible allocator. | ||
| 4726 | template<typename T> | ||
| 4727 | class VmaStlAllocator | ||
| 4728 | { | ||
| 4729 | public: | ||
| 4730 | const VkAllocationCallbacks* const m_pCallbacks; | ||
| 4731 | typedef T value_type; | ||
| 4732 | |||
| 4733 | VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { } | ||
| 4734 | template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { } | ||
| 4735 | |||
| 4736 | T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); } | ||
| 4737 | void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); } | ||
| 4738 | |||
| 4739 | template<typename U> | ||
| 4740 | bool operator==(const VmaStlAllocator<U>& rhs) const | ||
| 4741 | { | ||
| 4742 | return m_pCallbacks == rhs.m_pCallbacks; | ||
| 4743 | } | ||
| 4744 | template<typename U> | ||
| 4745 | bool operator!=(const VmaStlAllocator<U>& rhs) const | ||
| 4746 | { | ||
| 4747 | return m_pCallbacks != rhs.m_pCallbacks; | ||
| 4748 | } | ||
| 4749 | |||
| 4750 | VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete; | ||
| 4751 | }; | ||
| 4752 | |||
| 4753 | #if VMA_USE_STL_VECTOR | ||
| 4754 | |||
| 4755 | #define VmaVector std::vector | ||
| 4756 | |||
| 4757 | template<typename T, typename allocatorT> | ||
| 4758 | static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item) | ||
| 4759 | { | ||
| 4760 | vec.insert(vec.begin() + index, item); | ||
| 4761 | } | ||
| 4762 | |||
| 4763 | template<typename T, typename allocatorT> | ||
| 4764 | static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index) | ||
| 4765 | { | ||
| 4766 | vec.erase(vec.begin() + index); | ||
| 4767 | } | ||
| 4768 | |||
| 4769 | #else // #if VMA_USE_STL_VECTOR | ||
| 4770 | |||
| 4771 | /* Class with interface compatible with subset of std::vector. | ||
| 4772 | T must be POD because constructors and destructors are not called and memcpy is | ||
| 4773 | used for these objects. */ | ||
| 4774 | template<typename T, typename AllocatorT> | ||
| 4775 | class VmaVector | ||
| 4776 | { | ||
| 4777 | public: | ||
| 4778 | typedef T value_type; | ||
| 4779 | |||
| 4780 | VmaVector(const AllocatorT& allocator) : | ||
| 4781 | ✗ | m_Allocator(allocator), | |
| 4782 | ✗ | m_pArray(VMA_NULL), | |
| 4783 | ✗ | m_Count(0), | |
| 4784 | ✗ | m_Capacity(0) | |
| 4785 | { | ||
| 4786 | ✗ | } | |
| 4787 | |||
| 4788 | VmaVector(size_t count, const AllocatorT& allocator) : | ||
| 4789 | ✗ | m_Allocator(allocator), | |
| 4790 | ✗ | m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL), | |
| 4791 | ✗ | m_Count(count), | |
| 4792 | ✗ | m_Capacity(count) | |
| 4793 | { | ||
| 4794 | ✗ | } | |
| 4795 | |||
| 4796 | // This version of the constructor is here for compatibility with pre-C++14 std::vector. | ||
| 4797 | // value is unused. | ||
| 4798 | VmaVector(size_t count, const T& value, const AllocatorT& allocator) | ||
| 4799 | ✗ | : VmaVector(count, allocator) {} | |
| 4800 | |||
| 4801 | VmaVector(const VmaVector<T, AllocatorT>& src) : | ||
| 4802 | m_Allocator(src.m_Allocator), | ||
| 4803 | m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL), | ||
| 4804 | m_Count(src.m_Count), | ||
| 4805 | m_Capacity(src.m_Count) | ||
| 4806 | { | ||
| 4807 | if (m_Count != 0) | ||
| 4808 | { | ||
| 4809 | memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T)); | ||
| 4810 | } | ||
| 4811 | } | ||
| 4812 | |||
| 4813 | ~VmaVector() | ||
| 4814 | { | ||
| 4815 | ✗ | VmaFree(m_Allocator.m_pCallbacks, m_pArray); | |
| 4816 | ✗ | } | |
| 4817 | |||
| 4818 | VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs) | ||
| 4819 | { | ||
| 4820 | if (&rhs != this) | ||
| 4821 | { | ||
| 4822 | resize(rhs.m_Count); | ||
| 4823 | if (m_Count != 0) | ||
| 4824 | { | ||
| 4825 | memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T)); | ||
| 4826 | } | ||
| 4827 | } | ||
| 4828 | return *this; | ||
| 4829 | } | ||
| 4830 | |||
| 4831 | bool empty() const { return m_Count == 0; } | ||
| 4832 | size_t size() const { return m_Count; } | ||
| 4833 | T* data() { return m_pArray; } | ||
| 4834 | const T* data() const { return m_pArray; } | ||
| 4835 | |||
| 4836 | T& operator[](size_t index) | ||
| 4837 | { | ||
| 4838 | VMA_HEAVY_ASSERT(index < m_Count); | ||
| 4839 | ✗ | return m_pArray[index]; | |
| 4840 | } | ||
| 4841 | const T& operator[](size_t index) const | ||
| 4842 | { | ||
| 4843 | VMA_HEAVY_ASSERT(index < m_Count); | ||
| 4844 | ✗ | return m_pArray[index]; | |
| 4845 | } | ||
| 4846 | |||
| 4847 | T& front() | ||
| 4848 | { | ||
| 4849 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 4850 | return m_pArray[0]; | ||
| 4851 | } | ||
| 4852 | const T& front() const | ||
| 4853 | { | ||
| 4854 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 4855 | return m_pArray[0]; | ||
| 4856 | } | ||
| 4857 | T& back() | ||
| 4858 | { | ||
| 4859 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 4860 | ✗ | return m_pArray[m_Count - 1]; | |
| 4861 | } | ||
| 4862 | const T& back() const | ||
| 4863 | { | ||
| 4864 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 4865 | ✗ | return m_pArray[m_Count - 1]; | |
| 4866 | } | ||
| 4867 | |||
| 4868 | void reserve(size_t newCapacity, bool freeMemory = false) | ||
| 4869 | { | ||
| 4870 | newCapacity = VMA_MAX(newCapacity, m_Count); | ||
| 4871 | |||
| 4872 | if ((newCapacity < m_Capacity) && !freeMemory) | ||
| 4873 | { | ||
| 4874 | newCapacity = m_Capacity; | ||
| 4875 | } | ||
| 4876 | |||
| 4877 | if (newCapacity != m_Capacity) | ||
| 4878 | { | ||
| 4879 | T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL; | ||
| 4880 | if (m_Count != 0) | ||
| 4881 | { | ||
| 4882 | memcpy(newArray, m_pArray, m_Count * sizeof(T)); | ||
| 4883 | } | ||
| 4884 | VmaFree(m_Allocator.m_pCallbacks, m_pArray); | ||
| 4885 | m_Capacity = newCapacity; | ||
| 4886 | m_pArray = newArray; | ||
| 4887 | } | ||
| 4888 | } | ||
| 4889 | |||
| 4890 | void resize(size_t newCount, bool freeMemory = false) | ||
| 4891 | { | ||
| 4892 | ✗ | size_t newCapacity = m_Capacity; | |
| 4893 | ✗ | if (newCount > m_Capacity) | |
| 4894 | { | ||
| 4895 | ✗ | newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8)); | |
| 4896 | } | ||
| 4897 | ✗ | else if (freeMemory) | |
| 4898 | { | ||
| 4899 | ✗ | newCapacity = newCount; | |
| 4900 | } | ||
| 4901 | |||
| 4902 | ✗ | if (newCapacity != m_Capacity) | |
| 4903 | { | ||
| 4904 | ✗ | T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL; | |
| 4905 | ✗ | const size_t elementsToCopy = VMA_MIN(m_Count, newCount); | |
| 4906 | ✗ | if (elementsToCopy != 0) | |
| 4907 | { | ||
| 4908 | ✗ | memcpy(newArray, m_pArray, elementsToCopy * sizeof(T)); | |
| 4909 | } | ||
| 4910 | ✗ | VmaFree(m_Allocator.m_pCallbacks, m_pArray); | |
| 4911 | ✗ | m_Capacity = newCapacity; | |
| 4912 | ✗ | m_pArray = newArray; | |
| 4913 | } | ||
| 4914 | |||
| 4915 | ✗ | m_Count = newCount; | |
| 4916 | ✗ | } | |
| 4917 | |||
| 4918 | void clear(bool freeMemory = false) | ||
| 4919 | { | ||
| 4920 | ✗ | resize(0, freeMemory); | |
| 4921 | ✗ | } | |
| 4922 | |||
| 4923 | void insert(size_t index, const T& src) | ||
| 4924 | { | ||
| 4925 | VMA_HEAVY_ASSERT(index <= m_Count); | ||
| 4926 | ✗ | const size_t oldCount = size(); | |
| 4927 | ✗ | resize(oldCount + 1); | |
| 4928 | ✗ | if (index < oldCount) | |
| 4929 | { | ||
| 4930 | ✗ | memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T)); | |
| 4931 | } | ||
| 4932 | ✗ | m_pArray[index] = src; | |
| 4933 | ✗ | } | |
| 4934 | |||
| 4935 | void remove(size_t index) | ||
| 4936 | { | ||
| 4937 | VMA_HEAVY_ASSERT(index < m_Count); | ||
| 4938 | ✗ | const size_t oldCount = size(); | |
| 4939 | ✗ | if (index < oldCount - 1) | |
| 4940 | { | ||
| 4941 | ✗ | memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T)); | |
| 4942 | } | ||
| 4943 | ✗ | resize(oldCount - 1); | |
| 4944 | ✗ | } | |
| 4945 | |||
| 4946 | void push_back(const T& src) | ||
| 4947 | { | ||
| 4948 | ✗ | const size_t newIndex = size(); | |
| 4949 | ✗ | resize(newIndex + 1); | |
| 4950 | ✗ | m_pArray[newIndex] = src; | |
| 4951 | ✗ | } | |
| 4952 | |||
| 4953 | void pop_back() | ||
| 4954 | { | ||
| 4955 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 4956 | ✗ | resize(size() - 1); | |
| 4957 | ✗ | } | |
| 4958 | |||
| 4959 | void push_front(const T& src) | ||
| 4960 | { | ||
| 4961 | insert(0, src); | ||
| 4962 | } | ||
| 4963 | |||
| 4964 | void pop_front() | ||
| 4965 | { | ||
| 4966 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 4967 | remove(0); | ||
| 4968 | } | ||
| 4969 | |||
| 4970 | typedef T* iterator; | ||
| 4971 | |||
| 4972 | iterator begin() { return m_pArray; } | ||
| 4973 | iterator end() { return m_pArray + m_Count; } | ||
| 4974 | |||
| 4975 | private: | ||
| 4976 | AllocatorT m_Allocator; | ||
| 4977 | T* m_pArray; | ||
| 4978 | size_t m_Count; | ||
| 4979 | size_t m_Capacity; | ||
| 4980 | }; | ||
| 4981 | |||
| 4982 | template<typename T, typename allocatorT> | ||
| 4983 | static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item) | ||
| 4984 | { | ||
| 4985 | ✗ | vec.insert(index, item); | |
| 4986 | ✗ | } | |
| 4987 | |||
| 4988 | template<typename T, typename allocatorT> | ||
| 4989 | static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index) | ||
| 4990 | { | ||
| 4991 | ✗ | vec.remove(index); | |
| 4992 | ✗ | } | |
| 4993 | |||
| 4994 | #endif // #if VMA_USE_STL_VECTOR | ||
| 4995 | |||
| 4996 | template<typename CmpLess, typename VectorT> | ||
| 4997 | size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value) | ||
| 4998 | { | ||
| 4999 | ✗ | const size_t indexToInsert = VmaBinaryFindFirstNotLess( | |
| 5000 | vector.data(), | ||
| 5001 | ✗ | vector.data() + vector.size(), | |
| 5002 | value, | ||
| 5003 | ✗ | CmpLess()) - vector.data(); | |
| 5004 | ✗ | VmaVectorInsert(vector, indexToInsert, value); | |
| 5005 | ✗ | return indexToInsert; | |
| 5006 | } | ||
| 5007 | |||
| 5008 | template<typename CmpLess, typename VectorT> | ||
| 5009 | bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value) | ||
| 5010 | { | ||
| 5011 | CmpLess comparator; | ||
| 5012 | ✗ | typename VectorT::iterator it = VmaBinaryFindFirstNotLess( | |
| 5013 | vector.begin(), | ||
| 5014 | vector.end(), | ||
| 5015 | value, | ||
| 5016 | comparator); | ||
| 5017 | ✗ | if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) | |
| 5018 | { | ||
| 5019 | ✗ | size_t indexToRemove = it - vector.begin(); | |
| 5020 | ✗ | VmaVectorRemove(vector, indexToRemove); | |
| 5021 | ✗ | return true; | |
| 5022 | } | ||
| 5023 | ✗ | return false; | |
| 5024 | } | ||
| 5025 | |||
| 5026 | //////////////////////////////////////////////////////////////////////////////// | ||
| 5027 | // class VmaSmallVector | ||
| 5028 | |||
| 5029 | /* | ||
| 5030 | This is a vector (a variable-sized array), optimized for the case when the array is small. | ||
| 5031 | |||
| 5032 | It contains some number of elements in-place, which allows it to avoid heap allocation | ||
| 5033 | when the actual number of elements is below that threshold. This allows normal "small" | ||
| 5034 | cases to be fast without losing generality for large inputs. | ||
| 5035 | */ | ||
| 5036 | |||
| 5037 | template<typename T, typename AllocatorT, size_t N> | ||
| 5038 | class VmaSmallVector | ||
| 5039 | { | ||
| 5040 | public: | ||
| 5041 | typedef T value_type; | ||
| 5042 | |||
| 5043 | VmaSmallVector(const AllocatorT& allocator) : | ||
| 5044 | ✗ | m_Count(0), | |
| 5045 | ✗ | m_DynamicArray(allocator) | |
| 5046 | { | ||
| 5047 | ✗ | } | |
| 5048 | VmaSmallVector(size_t count, const AllocatorT& allocator) : | ||
| 5049 | m_Count(count), | ||
| 5050 | m_DynamicArray(count > N ? count : 0, allocator) | ||
| 5051 | { | ||
| 5052 | } | ||
| 5053 | template<typename SrcT, typename SrcAllocatorT, size_t SrcN> | ||
| 5054 | VmaSmallVector(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>& src) = delete; | ||
| 5055 | template<typename SrcT, typename SrcAllocatorT, size_t SrcN> | ||
| 5056 | VmaSmallVector<T, AllocatorT, N>& operator=(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>& rhs) = delete; | ||
| 5057 | |||
| 5058 | bool empty() const { return m_Count == 0; } | ||
| 5059 | size_t size() const { return m_Count; } | ||
| 5060 | T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } | ||
| 5061 | const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } | ||
| 5062 | |||
| 5063 | T& operator[](size_t index) | ||
| 5064 | { | ||
| 5065 | VMA_HEAVY_ASSERT(index < m_Count); | ||
| 5066 | return data()[index]; | ||
| 5067 | } | ||
| 5068 | const T& operator[](size_t index) const | ||
| 5069 | { | ||
| 5070 | VMA_HEAVY_ASSERT(index < m_Count); | ||
| 5071 | return data()[index]; | ||
| 5072 | } | ||
| 5073 | |||
| 5074 | T& front() | ||
| 5075 | { | ||
| 5076 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 5077 | return data()[0]; | ||
| 5078 | } | ||
| 5079 | const T& front() const | ||
| 5080 | { | ||
| 5081 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 5082 | return data()[0]; | ||
| 5083 | } | ||
| 5084 | T& back() | ||
| 5085 | { | ||
| 5086 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 5087 | return data()[m_Count - 1]; | ||
| 5088 | } | ||
| 5089 | const T& back() const | ||
| 5090 | { | ||
| 5091 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 5092 | return data()[m_Count - 1]; | ||
| 5093 | } | ||
| 5094 | |||
| 5095 | void resize(size_t newCount, bool freeMemory = false) | ||
| 5096 | { | ||
| 5097 | ✗ | if (newCount > N && m_Count > N) | |
| 5098 | { | ||
| 5099 | // Any direction, staying in m_DynamicArray | ||
| 5100 | ✗ | m_DynamicArray.resize(newCount, freeMemory); | |
| 5101 | } | ||
| 5102 | ✗ | else if (newCount > N && m_Count <= N) | |
| 5103 | { | ||
| 5104 | // Growing, moving from m_StaticArray to m_DynamicArray | ||
| 5105 | ✗ | m_DynamicArray.resize(newCount, freeMemory); | |
| 5106 | ✗ | if (m_Count > 0) | |
| 5107 | { | ||
| 5108 | ✗ | memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T)); | |
| 5109 | } | ||
| 5110 | } | ||
| 5111 | ✗ | else if (newCount <= N && m_Count > N) | |
| 5112 | { | ||
| 5113 | // Shrinking, moving from m_DynamicArray to m_StaticArray | ||
| 5114 | ✗ | if (newCount > 0) | |
| 5115 | { | ||
| 5116 | ✗ | memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T)); | |
| 5117 | } | ||
| 5118 | ✗ | m_DynamicArray.resize(0, freeMemory); | |
| 5119 | } | ||
| 5120 | else | ||
| 5121 | { | ||
| 5122 | // Any direction, staying in m_StaticArray - nothing to do here | ||
| 5123 | } | ||
| 5124 | ✗ | m_Count = newCount; | |
| 5125 | ✗ | } | |
| 5126 | |||
| 5127 | void clear(bool freeMemory = false) | ||
| 5128 | { | ||
| 5129 | m_DynamicArray.clear(freeMemory); | ||
| 5130 | m_Count = 0; | ||
| 5131 | } | ||
| 5132 | |||
| 5133 | void insert(size_t index, const T& src) | ||
| 5134 | { | ||
| 5135 | VMA_HEAVY_ASSERT(index <= m_Count); | ||
| 5136 | const size_t oldCount = size(); | ||
| 5137 | resize(oldCount + 1); | ||
| 5138 | T* const dataPtr = data(); | ||
| 5139 | if (index < oldCount) | ||
| 5140 | { | ||
| 5141 | // I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray. | ||
| 5142 | memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T)); | ||
| 5143 | } | ||
| 5144 | dataPtr[index] = src; | ||
| 5145 | } | ||
| 5146 | |||
| 5147 | void remove(size_t index) | ||
| 5148 | { | ||
| 5149 | VMA_HEAVY_ASSERT(index < m_Count); | ||
| 5150 | const size_t oldCount = size(); | ||
| 5151 | if (index < oldCount - 1) | ||
| 5152 | { | ||
| 5153 | // I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray. | ||
| 5154 | T* const dataPtr = data(); | ||
| 5155 | memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T)); | ||
| 5156 | } | ||
| 5157 | resize(oldCount - 1); | ||
| 5158 | } | ||
| 5159 | |||
| 5160 | void push_back(const T& src) | ||
| 5161 | { | ||
| 5162 | ✗ | const size_t newIndex = size(); | |
| 5163 | ✗ | resize(newIndex + 1); | |
| 5164 | ✗ | data()[newIndex] = src; | |
| 5165 | ✗ | } | |
| 5166 | |||
| 5167 | void pop_back() | ||
| 5168 | { | ||
| 5169 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 5170 | resize(size() - 1); | ||
| 5171 | } | ||
| 5172 | |||
| 5173 | void push_front(const T& src) | ||
| 5174 | { | ||
| 5175 | insert(0, src); | ||
| 5176 | } | ||
| 5177 | |||
| 5178 | void pop_front() | ||
| 5179 | { | ||
| 5180 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 5181 | remove(0); | ||
| 5182 | } | ||
| 5183 | |||
| 5184 | typedef T* iterator; | ||
| 5185 | |||
| 5186 | iterator begin() { return data(); } | ||
| 5187 | iterator end() { return data() + m_Count; } | ||
| 5188 | |||
| 5189 | private: | ||
| 5190 | size_t m_Count; | ||
| 5191 | T m_StaticArray[N]; // Used when m_Size <= N | ||
| 5192 | VmaVector<T, AllocatorT> m_DynamicArray; // Used when m_Size > N | ||
| 5193 | }; | ||
| 5194 | |||
| 5195 | //////////////////////////////////////////////////////////////////////////////// | ||
| 5196 | // class VmaPoolAllocator | ||
| 5197 | |||
| 5198 | /* | ||
| 5199 | Allocator for objects of type T using a list of arrays (pools) to speed up | ||
| 5200 | allocation. Number of elements that can be allocated is not bounded because | ||
| 5201 | allocator can create multiple blocks. | ||
| 5202 | */ | ||
| 5203 | template<typename T> | ||
| 5204 | class VmaPoolAllocator | ||
| 5205 | { | ||
| 5206 | VMA_CLASS_NO_COPY(VmaPoolAllocator) | ||
| 5207 | public: | ||
| 5208 | VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity); | ||
| 5209 | ~VmaPoolAllocator(); | ||
| 5210 | template<typename... Types> T* Alloc(Types... args); | ||
| 5211 | void Free(T* ptr); | ||
| 5212 | |||
| 5213 | private: | ||
| 5214 | union Item | ||
| 5215 | { | ||
| 5216 | uint32_t NextFreeIndex; | ||
| 5217 | alignas(T) char Value[sizeof(T)]; | ||
| 5218 | }; | ||
| 5219 | |||
| 5220 | struct ItemBlock | ||
| 5221 | { | ||
| 5222 | Item* pItems; | ||
| 5223 | uint32_t Capacity; | ||
| 5224 | uint32_t FirstFreeIndex; | ||
| 5225 | }; | ||
| 5226 | |||
| 5227 | const VkAllocationCallbacks* m_pAllocationCallbacks; | ||
| 5228 | const uint32_t m_FirstBlockCapacity; | ||
| 5229 | VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks; | ||
| 5230 | |||
| 5231 | ItemBlock& CreateNewBlock(); | ||
| 5232 | }; | ||
| 5233 | |||
| 5234 | template<typename T> | ||
| 5235 | VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) : | ||
| 5236 | ✗ | m_pAllocationCallbacks(pAllocationCallbacks), | |
| 5237 | ✗ | m_FirstBlockCapacity(firstBlockCapacity), | |
| 5238 | ✗ | m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks)) | |
| 5239 | { | ||
| 5240 | ✗ | VMA_ASSERT(m_FirstBlockCapacity > 1); | |
| 5241 | ✗ | } | |
| 5242 | |||
| 5243 | template<typename T> | ||
| 5244 | VmaPoolAllocator<T>::~VmaPoolAllocator() | ||
| 5245 | { | ||
| 5246 | ✗ | for (size_t i = m_ItemBlocks.size(); i--; ) | |
| 5247 | ✗ | vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity); | |
| 5248 | ✗ | m_ItemBlocks.clear(); | |
| 5249 | ✗ | } | |
| 5250 | |||
| 5251 | template<typename T> | ||
| 5252 | template<typename... Types> T* VmaPoolAllocator<T>::Alloc(Types... args) | ||
| 5253 | { | ||
| 5254 | ✗ | for (size_t i = m_ItemBlocks.size(); i--; ) | |
| 5255 | { | ||
| 5256 | ✗ | ItemBlock& block = m_ItemBlocks[i]; | |
| 5257 | // This block has some free items: Use first one. | ||
| 5258 | ✗ | if (block.FirstFreeIndex != UINT32_MAX) | |
| 5259 | { | ||
| 5260 | ✗ | Item* const pItem = &block.pItems[block.FirstFreeIndex]; | |
| 5261 | ✗ | block.FirstFreeIndex = pItem->NextFreeIndex; | |
| 5262 | ✗ | T* result = (T*)&pItem->Value; | |
| 5263 | ✗ | new(result)T(std::forward<Types>(args)...); // Explicit constructor call. | |
| 5264 | ✗ | return result; | |
| 5265 | } | ||
| 5266 | } | ||
| 5267 | |||
| 5268 | // No block has free item: Create new one and use it. | ||
| 5269 | ✗ | ItemBlock& newBlock = CreateNewBlock(); | |
| 5270 | ✗ | Item* const pItem = &newBlock.pItems[0]; | |
| 5271 | ✗ | newBlock.FirstFreeIndex = pItem->NextFreeIndex; | |
| 5272 | ✗ | T* result = (T*)&pItem->Value; | |
| 5273 | ✗ | new(result)T(std::forward<Types>(args)...); // Explicit constructor call. | |
| 5274 | ✗ | return result; | |
| 5275 | } | ||
| 5276 | |||
| 5277 | template<typename T> | ||
| 5278 | void VmaPoolAllocator<T>::Free(T* ptr) | ||
| 5279 | { | ||
| 5280 | // Search all memory blocks to find ptr. | ||
| 5281 | ✗ | for (size_t i = m_ItemBlocks.size(); i--; ) | |
| 5282 | { | ||
| 5283 | ✗ | ItemBlock& block = m_ItemBlocks[i]; | |
| 5284 | |||
| 5285 | // Casting to union. | ||
| 5286 | Item* pItemPtr; | ||
| 5287 | ✗ | memcpy(&pItemPtr, &ptr, sizeof(pItemPtr)); | |
| 5288 | |||
| 5289 | // Check if pItemPtr is in address range of this block. | ||
| 5290 | ✗ | if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity)) | |
| 5291 | { | ||
| 5292 | ✗ | ptr->~T(); // Explicit destructor call. | |
| 5293 | ✗ | const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems); | |
| 5294 | ✗ | pItemPtr->NextFreeIndex = block.FirstFreeIndex; | |
| 5295 | ✗ | block.FirstFreeIndex = index; | |
| 5296 | ✗ | return; | |
| 5297 | } | ||
| 5298 | } | ||
| 5299 | ✗ | VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool."); | |
| 5300 | } | ||
| 5301 | |||
| 5302 | template<typename T> | ||
| 5303 | typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock() | ||
| 5304 | { | ||
| 5305 | ✗ | const uint32_t newBlockCapacity = m_ItemBlocks.empty() ? | |
| 5306 | ✗ | m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2; | |
| 5307 | |||
| 5308 | ✗ | const ItemBlock newBlock = { | |
| 5309 | ✗ | vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity), | |
| 5310 | newBlockCapacity, | ||
| 5311 | 0 }; | ||
| 5312 | |||
| 5313 | ✗ | m_ItemBlocks.push_back(newBlock); | |
| 5314 | |||
| 5315 | // Setup singly-linked list of all free items in this block. | ||
| 5316 | ✗ | for (uint32_t i = 0; i < newBlockCapacity - 1; ++i) | |
| 5317 | ✗ | newBlock.pItems[i].NextFreeIndex = i + 1; | |
| 5318 | ✗ | newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX; | |
| 5319 | ✗ | return m_ItemBlocks.back(); | |
| 5320 | } | ||
| 5321 | |||
| 5322 | //////////////////////////////////////////////////////////////////////////////// | ||
| 5323 | // class VmaRawList, VmaList | ||
| 5324 | |||
| 5325 | #if VMA_USE_STL_LIST | ||
| 5326 | |||
| 5327 | #define VmaList std::list | ||
| 5328 | |||
| 5329 | #else // #if VMA_USE_STL_LIST | ||
| 5330 | |||
| 5331 | template<typename T> | ||
| 5332 | struct VmaListItem | ||
| 5333 | { | ||
| 5334 | VmaListItem* pPrev; | ||
| 5335 | VmaListItem* pNext; | ||
| 5336 | T Value; | ||
| 5337 | }; | ||
| 5338 | |||
| 5339 | // Doubly linked list. | ||
| 5340 | template<typename T> | ||
| 5341 | class VmaRawList | ||
| 5342 | { | ||
| 5343 | VMA_CLASS_NO_COPY(VmaRawList) | ||
| 5344 | public: | ||
| 5345 | typedef VmaListItem<T> ItemType; | ||
| 5346 | |||
| 5347 | VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks); | ||
| 5348 | ~VmaRawList(); | ||
| 5349 | void Clear(); | ||
| 5350 | |||
| 5351 | size_t GetCount() const { return m_Count; } | ||
| 5352 | bool IsEmpty() const { return m_Count == 0; } | ||
| 5353 | |||
| 5354 | ItemType* Front() { return m_pFront; } | ||
| 5355 | const ItemType* Front() const { return m_pFront; } | ||
| 5356 | ItemType* Back() { return m_pBack; } | ||
| 5357 | const ItemType* Back() const { return m_pBack; } | ||
| 5358 | |||
| 5359 | ItemType* PushBack(); | ||
| 5360 | ItemType* PushFront(); | ||
| 5361 | ItemType* PushBack(const T& value); | ||
| 5362 | ItemType* PushFront(const T& value); | ||
| 5363 | void PopBack(); | ||
| 5364 | void PopFront(); | ||
| 5365 | |||
| 5366 | // Item can be null - it means PushBack. | ||
| 5367 | ItemType* InsertBefore(ItemType* pItem); | ||
| 5368 | // Item can be null - it means PushFront. | ||
| 5369 | ItemType* InsertAfter(ItemType* pItem); | ||
| 5370 | |||
| 5371 | ItemType* InsertBefore(ItemType* pItem, const T& value); | ||
| 5372 | ItemType* InsertAfter(ItemType* pItem, const T& value); | ||
| 5373 | |||
| 5374 | void Remove(ItemType* pItem); | ||
| 5375 | |||
| 5376 | private: | ||
| 5377 | const VkAllocationCallbacks* const m_pAllocationCallbacks; | ||
| 5378 | VmaPoolAllocator<ItemType> m_ItemAllocator; | ||
| 5379 | ItemType* m_pFront; | ||
| 5380 | ItemType* m_pBack; | ||
| 5381 | size_t m_Count; | ||
| 5382 | }; | ||
| 5383 | |||
| 5384 | template<typename T> | ||
| 5385 | VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) : | ||
| 5386 | ✗ | m_pAllocationCallbacks(pAllocationCallbacks), | |
| 5387 | ✗ | m_ItemAllocator(pAllocationCallbacks, 128), | |
| 5388 | ✗ | m_pFront(VMA_NULL), | |
| 5389 | ✗ | m_pBack(VMA_NULL), | |
| 5390 | ✗ | m_Count(0) | |
| 5391 | { | ||
| 5392 | ✗ | } | |
| 5393 | |||
| 5394 | template<typename T> | ||
| 5395 | VmaRawList<T>::~VmaRawList() | ||
| 5396 | { | ||
| 5397 | // Intentionally not calling Clear, because that would be unnecessary | ||
| 5398 | // computations to return all items to m_ItemAllocator as free. | ||
| 5399 | ✗ | } | |
| 5400 | |||
| 5401 | template<typename T> | ||
| 5402 | void VmaRawList<T>::Clear() | ||
| 5403 | { | ||
| 5404 | if (IsEmpty() == false) | ||
| 5405 | { | ||
| 5406 | ItemType* pItem = m_pBack; | ||
| 5407 | while (pItem != VMA_NULL) | ||
| 5408 | { | ||
| 5409 | ItemType* const pPrevItem = pItem->pPrev; | ||
| 5410 | m_ItemAllocator.Free(pItem); | ||
| 5411 | pItem = pPrevItem; | ||
| 5412 | } | ||
| 5413 | m_pFront = VMA_NULL; | ||
| 5414 | m_pBack = VMA_NULL; | ||
| 5415 | m_Count = 0; | ||
| 5416 | } | ||
| 5417 | } | ||
| 5418 | |||
| 5419 | template<typename T> | ||
| 5420 | VmaListItem<T>* VmaRawList<T>::PushBack() | ||
| 5421 | { | ||
| 5422 | ✗ | ItemType* const pNewItem = m_ItemAllocator.Alloc(); | |
| 5423 | ✗ | pNewItem->pNext = VMA_NULL; | |
| 5424 | ✗ | if (IsEmpty()) | |
| 5425 | { | ||
| 5426 | ✗ | pNewItem->pPrev = VMA_NULL; | |
| 5427 | ✗ | m_pFront = pNewItem; | |
| 5428 | ✗ | m_pBack = pNewItem; | |
| 5429 | ✗ | m_Count = 1; | |
| 5430 | } | ||
| 5431 | else | ||
| 5432 | { | ||
| 5433 | ✗ | pNewItem->pPrev = m_pBack; | |
| 5434 | ✗ | m_pBack->pNext = pNewItem; | |
| 5435 | ✗ | m_pBack = pNewItem; | |
| 5436 | ✗ | ++m_Count; | |
| 5437 | } | ||
| 5438 | ✗ | return pNewItem; | |
| 5439 | } | ||
| 5440 | |||
| 5441 | template<typename T> | ||
| 5442 | VmaListItem<T>* VmaRawList<T>::PushFront() | ||
| 5443 | { | ||
| 5444 | ItemType* const pNewItem = m_ItemAllocator.Alloc(); | ||
| 5445 | pNewItem->pPrev = VMA_NULL; | ||
| 5446 | if (IsEmpty()) | ||
| 5447 | { | ||
| 5448 | pNewItem->pNext = VMA_NULL; | ||
| 5449 | m_pFront = pNewItem; | ||
| 5450 | m_pBack = pNewItem; | ||
| 5451 | m_Count = 1; | ||
| 5452 | } | ||
| 5453 | else | ||
| 5454 | { | ||
| 5455 | pNewItem->pNext = m_pFront; | ||
| 5456 | m_pFront->pPrev = pNewItem; | ||
| 5457 | m_pFront = pNewItem; | ||
| 5458 | ++m_Count; | ||
| 5459 | } | ||
| 5460 | return pNewItem; | ||
| 5461 | } | ||
| 5462 | |||
| 5463 | template<typename T> | ||
| 5464 | VmaListItem<T>* VmaRawList<T>::PushBack(const T& value) | ||
| 5465 | { | ||
| 5466 | ✗ | ItemType* const pNewItem = PushBack(); | |
| 5467 | ✗ | pNewItem->Value = value; | |
| 5468 | ✗ | return pNewItem; | |
| 5469 | } | ||
| 5470 | |||
| 5471 | template<typename T> | ||
| 5472 | VmaListItem<T>* VmaRawList<T>::PushFront(const T& value) | ||
| 5473 | { | ||
| 5474 | ItemType* const pNewItem = PushFront(); | ||
| 5475 | pNewItem->Value = value; | ||
| 5476 | return pNewItem; | ||
| 5477 | } | ||
| 5478 | |||
| 5479 | template<typename T> | ||
| 5480 | void VmaRawList<T>::PopBack() | ||
| 5481 | { | ||
| 5482 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 5483 | ItemType* const pBackItem = m_pBack; | ||
| 5484 | ItemType* const pPrevItem = pBackItem->pPrev; | ||
| 5485 | if (pPrevItem != VMA_NULL) | ||
| 5486 | { | ||
| 5487 | pPrevItem->pNext = VMA_NULL; | ||
| 5488 | } | ||
| 5489 | m_pBack = pPrevItem; | ||
| 5490 | m_ItemAllocator.Free(pBackItem); | ||
| 5491 | --m_Count; | ||
| 5492 | } | ||
| 5493 | |||
| 5494 | template<typename T> | ||
| 5495 | void VmaRawList<T>::PopFront() | ||
| 5496 | { | ||
| 5497 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 5498 | ItemType* const pFrontItem = m_pFront; | ||
| 5499 | ItemType* const pNextItem = pFrontItem->pNext; | ||
| 5500 | if (pNextItem != VMA_NULL) | ||
| 5501 | { | ||
| 5502 | pNextItem->pPrev = VMA_NULL; | ||
| 5503 | } | ||
| 5504 | m_pFront = pNextItem; | ||
| 5505 | m_ItemAllocator.Free(pFrontItem); | ||
| 5506 | --m_Count; | ||
| 5507 | } | ||
| 5508 | |||
| 5509 | template<typename T> | ||
| 5510 | void VmaRawList<T>::Remove(ItemType* pItem) | ||
| 5511 | { | ||
| 5512 | VMA_HEAVY_ASSERT(pItem != VMA_NULL); | ||
| 5513 | VMA_HEAVY_ASSERT(m_Count > 0); | ||
| 5514 | |||
| 5515 | ✗ | if (pItem->pPrev != VMA_NULL) | |
| 5516 | { | ||
| 5517 | ✗ | pItem->pPrev->pNext = pItem->pNext; | |
| 5518 | } | ||
| 5519 | else | ||
| 5520 | { | ||
| 5521 | VMA_HEAVY_ASSERT(m_pFront == pItem); | ||
| 5522 | ✗ | m_pFront = pItem->pNext; | |
| 5523 | } | ||
| 5524 | |||
| 5525 | ✗ | if (pItem->pNext != VMA_NULL) | |
| 5526 | { | ||
| 5527 | ✗ | pItem->pNext->pPrev = pItem->pPrev; | |
| 5528 | } | ||
| 5529 | else | ||
| 5530 | { | ||
| 5531 | VMA_HEAVY_ASSERT(m_pBack == pItem); | ||
| 5532 | ✗ | m_pBack = pItem->pPrev; | |
| 5533 | } | ||
| 5534 | |||
| 5535 | ✗ | m_ItemAllocator.Free(pItem); | |
| 5536 | ✗ | --m_Count; | |
| 5537 | ✗ | } | |
| 5538 | |||
| 5539 | template<typename T> | ||
| 5540 | VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem) | ||
| 5541 | { | ||
| 5542 | ✗ | if (pItem != VMA_NULL) | |
| 5543 | { | ||
| 5544 | ✗ | ItemType* const prevItem = pItem->pPrev; | |
| 5545 | ✗ | ItemType* const newItem = m_ItemAllocator.Alloc(); | |
| 5546 | ✗ | newItem->pPrev = prevItem; | |
| 5547 | ✗ | newItem->pNext = pItem; | |
| 5548 | ✗ | pItem->pPrev = newItem; | |
| 5549 | ✗ | if (prevItem != VMA_NULL) | |
| 5550 | { | ||
| 5551 | ✗ | prevItem->pNext = newItem; | |
| 5552 | } | ||
| 5553 | else | ||
| 5554 | { | ||
| 5555 | VMA_HEAVY_ASSERT(m_pFront == pItem); | ||
| 5556 | ✗ | m_pFront = newItem; | |
| 5557 | } | ||
| 5558 | ✗ | ++m_Count; | |
| 5559 | ✗ | return newItem; | |
| 5560 | } | ||
| 5561 | else | ||
| 5562 | ✗ | return PushBack(); | |
| 5563 | } | ||
| 5564 | |||
| 5565 | template<typename T> | ||
| 5566 | VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem) | ||
| 5567 | { | ||
| 5568 | if (pItem != VMA_NULL) | ||
| 5569 | { | ||
| 5570 | ItemType* const nextItem = pItem->pNext; | ||
| 5571 | ItemType* const newItem = m_ItemAllocator.Alloc(); | ||
| 5572 | newItem->pNext = nextItem; | ||
| 5573 | newItem->pPrev = pItem; | ||
| 5574 | pItem->pNext = newItem; | ||
| 5575 | if (nextItem != VMA_NULL) | ||
| 5576 | { | ||
| 5577 | nextItem->pPrev = newItem; | ||
| 5578 | } | ||
| 5579 | else | ||
| 5580 | { | ||
| 5581 | VMA_HEAVY_ASSERT(m_pBack == pItem); | ||
| 5582 | m_pBack = newItem; | ||
| 5583 | } | ||
| 5584 | ++m_Count; | ||
| 5585 | return newItem; | ||
| 5586 | } | ||
| 5587 | else | ||
| 5588 | return PushFront(); | ||
| 5589 | } | ||
| 5590 | |||
| 5591 | template<typename T> | ||
| 5592 | VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value) | ||
| 5593 | { | ||
| 5594 | ✗ | ItemType* const newItem = InsertBefore(pItem); | |
| 5595 | ✗ | newItem->Value = value; | |
| 5596 | ✗ | return newItem; | |
| 5597 | } | ||
| 5598 | |||
| 5599 | template<typename T> | ||
| 5600 | VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value) | ||
| 5601 | { | ||
| 5602 | ItemType* const newItem = InsertAfter(pItem); | ||
| 5603 | newItem->Value = value; | ||
| 5604 | return newItem; | ||
| 5605 | } | ||
| 5606 | |||
| 5607 | template<typename T, typename AllocatorT> | ||
| 5608 | class VmaList | ||
| 5609 | { | ||
| 5610 | VMA_CLASS_NO_COPY(VmaList) | ||
| 5611 | public: | ||
| 5612 | class iterator | ||
| 5613 | { | ||
| 5614 | public: | ||
| 5615 | iterator() : | ||
| 5616 | ✗ | m_pList(VMA_NULL), | |
| 5617 | ✗ | m_pItem(VMA_NULL) | |
| 5618 | { | ||
| 5619 | ✗ | } | |
| 5620 | |||
| 5621 | T& operator*() const | ||
| 5622 | { | ||
| 5623 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); | ||
| 5624 | ✗ | return m_pItem->Value; | |
| 5625 | } | ||
| 5626 | T* operator->() const | ||
| 5627 | { | ||
| 5628 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); | ||
| 5629 | ✗ | return &m_pItem->Value; | |
| 5630 | } | ||
| 5631 | |||
| 5632 | iterator& operator++() | ||
| 5633 | { | ||
| 5634 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); | ||
| 5635 | ✗ | m_pItem = m_pItem->pNext; | |
| 5636 | ✗ | return *this; | |
| 5637 | } | ||
| 5638 | iterator& operator--() | ||
| 5639 | { | ||
| 5640 | ✗ | if (m_pItem != VMA_NULL) | |
| 5641 | { | ||
| 5642 | ✗ | m_pItem = m_pItem->pPrev; | |
| 5643 | } | ||
| 5644 | else | ||
| 5645 | { | ||
| 5646 | VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); | ||
| 5647 | ✗ | m_pItem = m_pList->Back(); | |
| 5648 | } | ||
| 5649 | ✗ | return *this; | |
| 5650 | } | ||
| 5651 | |||
| 5652 | iterator operator++(int) | ||
| 5653 | { | ||
| 5654 | iterator result = *this; | ||
| 5655 | ++* this; | ||
| 5656 | return result; | ||
| 5657 | } | ||
| 5658 | iterator operator--(int) | ||
| 5659 | { | ||
| 5660 | iterator result = *this; | ||
| 5661 | --* this; | ||
| 5662 | return result; | ||
| 5663 | } | ||
| 5664 | |||
| 5665 | bool operator==(const iterator& rhs) const | ||
| 5666 | { | ||
| 5667 | VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); | ||
| 5668 | ✗ | return m_pItem == rhs.m_pItem; | |
| 5669 | } | ||
| 5670 | bool operator!=(const iterator& rhs) const | ||
| 5671 | { | ||
| 5672 | VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); | ||
| 5673 | ✗ | return m_pItem != rhs.m_pItem; | |
| 5674 | } | ||
| 5675 | |||
| 5676 | private: | ||
| 5677 | VmaRawList<T>* m_pList; | ||
| 5678 | VmaListItem<T>* m_pItem; | ||
| 5679 | |||
| 5680 | iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : | ||
| 5681 | ✗ | m_pList(pList), | |
| 5682 | ✗ | m_pItem(pItem) | |
| 5683 | { | ||
| 5684 | ✗ | } | |
| 5685 | |||
| 5686 | friend class VmaList<T, AllocatorT>; | ||
| 5687 | }; | ||
| 5688 | |||
| 5689 | class const_iterator | ||
| 5690 | { | ||
| 5691 | public: | ||
| 5692 | const_iterator() : | ||
| 5693 | m_pList(VMA_NULL), | ||
| 5694 | m_pItem(VMA_NULL) | ||
| 5695 | { | ||
| 5696 | } | ||
| 5697 | |||
| 5698 | const_iterator(const iterator& src) : | ||
| 5699 | ✗ | m_pList(src.m_pList), | |
| 5700 | ✗ | m_pItem(src.m_pItem) | |
| 5701 | { | ||
| 5702 | ✗ | } | |
| 5703 | |||
| 5704 | const T& operator*() const | ||
| 5705 | { | ||
| 5706 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); | ||
| 5707 | ✗ | return m_pItem->Value; | |
| 5708 | } | ||
| 5709 | const T* operator->() const | ||
| 5710 | { | ||
| 5711 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); | ||
| 5712 | ✗ | return &m_pItem->Value; | |
| 5713 | } | ||
| 5714 | |||
| 5715 | const_iterator& operator++() | ||
| 5716 | { | ||
| 5717 | VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); | ||
| 5718 | ✗ | m_pItem = m_pItem->pNext; | |
| 5719 | ✗ | return *this; | |
| 5720 | } | ||
| 5721 | const_iterator& operator--() | ||
| 5722 | { | ||
| 5723 | ✗ | if (m_pItem != VMA_NULL) | |
| 5724 | { | ||
| 5725 | ✗ | m_pItem = m_pItem->pPrev; | |
| 5726 | } | ||
| 5727 | else | ||
| 5728 | { | ||
| 5729 | VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); | ||
| 5730 | ✗ | m_pItem = m_pList->Back(); | |
| 5731 | } | ||
| 5732 | ✗ | return *this; | |
| 5733 | } | ||
| 5734 | |||
| 5735 | const_iterator operator++(int) | ||
| 5736 | { | ||
| 5737 | const_iterator result = *this; | ||
| 5738 | ++* this; | ||
| 5739 | return result; | ||
| 5740 | } | ||
| 5741 | const_iterator operator--(int) | ||
| 5742 | { | ||
| 5743 | const_iterator result = *this; | ||
| 5744 | --* this; | ||
| 5745 | return result; | ||
| 5746 | } | ||
| 5747 | |||
| 5748 | bool operator==(const const_iterator& rhs) const | ||
| 5749 | { | ||
| 5750 | VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); | ||
| 5751 | ✗ | return m_pItem == rhs.m_pItem; | |
| 5752 | } | ||
| 5753 | bool operator!=(const const_iterator& rhs) const | ||
| 5754 | { | ||
| 5755 | VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); | ||
| 5756 | ✗ | return m_pItem != rhs.m_pItem; | |
| 5757 | } | ||
| 5758 | |||
| 5759 | private: | ||
| 5760 | const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : | ||
| 5761 | ✗ | m_pList(pList), | |
| 5762 | ✗ | m_pItem(pItem) | |
| 5763 | { | ||
| 5764 | ✗ | } | |
| 5765 | |||
| 5766 | const VmaRawList<T>* m_pList; | ||
| 5767 | const VmaListItem<T>* m_pItem; | ||
| 5768 | |||
| 5769 | friend class VmaList<T, AllocatorT>; | ||
| 5770 | }; | ||
| 5771 | |||
| 5772 | VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { } | ||
| 5773 | |||
| 5774 | bool empty() const { return m_RawList.IsEmpty(); } | ||
| 5775 | size_t size() const { return m_RawList.GetCount(); } | ||
| 5776 | |||
| 5777 | iterator begin() { return iterator(&m_RawList, m_RawList.Front()); } | ||
| 5778 | iterator end() { return iterator(&m_RawList, VMA_NULL); } | ||
| 5779 | |||
| 5780 | const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); } | ||
| 5781 | const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); } | ||
| 5782 | |||
| 5783 | void clear() { m_RawList.Clear(); } | ||
| 5784 | void push_back(const T& value) { m_RawList.PushBack(value); } | ||
| 5785 | void erase(iterator it) { m_RawList.Remove(it.m_pItem); } | ||
| 5786 | iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); } | ||
| 5787 | |||
| 5788 | private: | ||
| 5789 | VmaRawList<T> m_RawList; | ||
| 5790 | }; | ||
| 5791 | |||
| 5792 | #endif // #if VMA_USE_STL_LIST | ||
| 5793 | |||
| 5794 | //////////////////////////////////////////////////////////////////////////////// | ||
| 5795 | // class VmaMap | ||
| 5796 | |||
| 5797 | // Unused in this version. | ||
| 5798 | #if 0 | ||
| 5799 | |||
| 5800 | #if VMA_USE_STL_UNORDERED_MAP | ||
| 5801 | |||
| 5802 | #define VmaPair std::pair | ||
| 5803 | |||
| 5804 | #define VMA_MAP_TYPE(KeyT, ValueT) \ | ||
| 5805 | std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > > | ||
| 5806 | |||
| 5807 | #else // #if VMA_USE_STL_UNORDERED_MAP | ||
| 5808 | |||
| 5809 | template<typename T1, typename T2> | ||
| 5810 | struct VmaPair | ||
| 5811 | { | ||
| 5812 | T1 first; | ||
| 5813 | T2 second; | ||
| 5814 | |||
| 5815 | VmaPair() : first(), second() { } | ||
| 5816 | VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { } | ||
| 5817 | }; | ||
| 5818 | |||
| 5819 | /* Class compatible with subset of interface of std::unordered_map. | ||
| 5820 | KeyT, ValueT must be POD because they will be stored in VmaVector. | ||
| 5821 | */ | ||
| 5822 | template<typename KeyT, typename ValueT> | ||
| 5823 | class VmaMap | ||
| 5824 | { | ||
| 5825 | public: | ||
| 5826 | typedef VmaPair<KeyT, ValueT> PairType; | ||
| 5827 | typedef PairType* iterator; | ||
| 5828 | |||
| 5829 | VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { } | ||
| 5830 | |||
| 5831 | iterator begin() { return m_Vector.begin(); } | ||
| 5832 | iterator end() { return m_Vector.end(); } | ||
| 5833 | |||
| 5834 | void insert(const PairType& pair); | ||
| 5835 | iterator find(const KeyT& key); | ||
| 5836 | void erase(iterator it); | ||
| 5837 | |||
| 5838 | private: | ||
| 5839 | VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector; | ||
| 5840 | }; | ||
| 5841 | |||
| 5842 | #define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT> | ||
| 5843 | |||
| 5844 | template<typename FirstT, typename SecondT> | ||
| 5845 | struct VmaPairFirstLess | ||
| 5846 | { | ||
| 5847 | bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const | ||
| 5848 | { | ||
| 5849 | return lhs.first < rhs.first; | ||
| 5850 | } | ||
| 5851 | bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const | ||
| 5852 | { | ||
| 5853 | return lhs.first < rhsFirst; | ||
| 5854 | } | ||
| 5855 | }; | ||
| 5856 | |||
| 5857 | template<typename KeyT, typename ValueT> | ||
| 5858 | void VmaMap<KeyT, ValueT>::insert(const PairType& pair) | ||
| 5859 | { | ||
| 5860 | const size_t indexToInsert = VmaBinaryFindFirstNotLess( | ||
| 5861 | m_Vector.data(), | ||
| 5862 | m_Vector.data() + m_Vector.size(), | ||
| 5863 | pair, | ||
| 5864 | VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data(); | ||
| 5865 | VmaVectorInsert(m_Vector, indexToInsert, pair); | ||
| 5866 | } | ||
| 5867 | |||
| 5868 | template<typename KeyT, typename ValueT> | ||
| 5869 | VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key) | ||
| 5870 | { | ||
| 5871 | PairType* it = VmaBinaryFindFirstNotLess( | ||
| 5872 | m_Vector.data(), | ||
| 5873 | m_Vector.data() + m_Vector.size(), | ||
| 5874 | key, | ||
| 5875 | VmaPairFirstLess<KeyT, ValueT>()); | ||
| 5876 | if ((it != m_Vector.end()) && (it->first == key)) | ||
| 5877 | { | ||
| 5878 | return it; | ||
| 5879 | } | ||
| 5880 | else | ||
| 5881 | { | ||
| 5882 | return m_Vector.end(); | ||
| 5883 | } | ||
| 5884 | } | ||
| 5885 | |||
| 5886 | template<typename KeyT, typename ValueT> | ||
| 5887 | void VmaMap<KeyT, ValueT>::erase(iterator it) | ||
| 5888 | { | ||
| 5889 | VmaVectorRemove(m_Vector, it - m_Vector.begin()); | ||
| 5890 | } | ||
| 5891 | |||
| 5892 | #endif // #if VMA_USE_STL_UNORDERED_MAP | ||
| 5893 | |||
| 5894 | #endif // #if 0 | ||
| 5895 | |||
| 5896 | //////////////////////////////////////////////////////////////////////////////// | ||
| 5897 | |||
| 5898 | class VmaDeviceMemoryBlock; | ||
| 5899 | |||
| 5900 | enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, VMA_CACHE_INVALIDATE }; | ||
| 5901 | |||
| 5902 | struct VmaAllocation_T | ||
| 5903 | { | ||
| 5904 | private: | ||
| 5905 | static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80; | ||
| 5906 | |||
| 5907 | enum FLAGS | ||
| 5908 | { | ||
| 5909 | FLAG_USER_DATA_STRING = 0x01, | ||
| 5910 | }; | ||
| 5911 | |||
| 5912 | public: | ||
| 5913 | enum ALLOCATION_TYPE | ||
| 5914 | { | ||
| 5915 | ALLOCATION_TYPE_NONE, | ||
| 5916 | ALLOCATION_TYPE_BLOCK, | ||
| 5917 | ALLOCATION_TYPE_DEDICATED, | ||
| 5918 | }; | ||
| 5919 | |||
| 5920 | /* | ||
| 5921 | This struct is allocated using VmaPoolAllocator. | ||
| 5922 | */ | ||
| 5923 | |||
| 5924 | VmaAllocation_T(uint32_t currentFrameIndex, bool userDataString) : | ||
| 5925 | ✗ | m_Alignment{ 1 }, | |
| 5926 | ✗ | m_Size{ 0 }, | |
| 5927 | ✗ | m_pUserData{ VMA_NULL }, | |
| 5928 | ✗ | m_LastUseFrameIndex{ currentFrameIndex }, | |
| 5929 | ✗ | m_MemoryTypeIndex{ 0 }, | |
| 5930 | ✗ | m_Type{ (uint8_t)ALLOCATION_TYPE_NONE }, | |
| 5931 | ✗ | m_SuballocationType{ (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN }, | |
| 5932 | ✗ | m_MapCount{ 0 }, | |
| 5933 | ✗ | m_Flags{ userDataString ? (uint8_t)FLAG_USER_DATA_STRING : (uint8_t)0 } | |
| 5934 | { | ||
| 5935 | #if VMA_STATS_STRING_ENABLED | ||
| 5936 | ✗ | m_CreationFrameIndex = currentFrameIndex; | |
| 5937 | ✗ | m_BufferImageUsage = 0; | |
| 5938 | #endif | ||
| 5939 | ✗ | } | |
| 5940 | |||
| 5941 | ~VmaAllocation_T() | ||
| 5942 | { | ||
| 5943 | ✗ | VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction."); | |
| 5944 | |||
| 5945 | // Check if owned string was freed. | ||
| 5946 | ✗ | VMA_ASSERT(m_pUserData == VMA_NULL); | |
| 5947 | ✗ | } | |
| 5948 | |||
| 5949 | void InitBlockAllocation( | ||
| 5950 | VmaDeviceMemoryBlock* block, | ||
| 5951 | VkDeviceSize offset, | ||
| 5952 | VkDeviceSize alignment, | ||
| 5953 | VkDeviceSize size, | ||
| 5954 | uint32_t memoryTypeIndex, | ||
| 5955 | VmaSuballocationType suballocationType, | ||
| 5956 | bool mapped, | ||
| 5957 | bool canBecomeLost) | ||
| 5958 | { | ||
| 5959 | ✗ | VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); | |
| 5960 | ✗ | VMA_ASSERT(block != VMA_NULL); | |
| 5961 | ✗ | m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; | |
| 5962 | ✗ | m_Alignment = alignment; | |
| 5963 | ✗ | m_Size = size; | |
| 5964 | ✗ | m_MemoryTypeIndex = memoryTypeIndex; | |
| 5965 | ✗ | m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; | |
| 5966 | ✗ | m_SuballocationType = (uint8_t)suballocationType; | |
| 5967 | ✗ | m_BlockAllocation.m_Block = block; | |
| 5968 | ✗ | m_BlockAllocation.m_Offset = offset; | |
| 5969 | ✗ | m_BlockAllocation.m_CanBecomeLost = canBecomeLost; | |
| 5970 | ✗ | } | |
| 5971 | |||
| 5972 | void InitLost() | ||
| 5973 | { | ||
| 5974 | ✗ | VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); | |
| 5975 | ✗ | VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST); | |
| 5976 | ✗ | m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; | |
| 5977 | ✗ | m_MemoryTypeIndex = 0; | |
| 5978 | ✗ | m_BlockAllocation.m_Block = VMA_NULL; | |
| 5979 | ✗ | m_BlockAllocation.m_Offset = 0; | |
| 5980 | ✗ | m_BlockAllocation.m_CanBecomeLost = true; | |
| 5981 | ✗ | } | |
| 5982 | |||
| 5983 | void ChangeBlockAllocation( | ||
| 5984 | VmaAllocator hAllocator, | ||
| 5985 | VmaDeviceMemoryBlock* block, | ||
| 5986 | VkDeviceSize offset); | ||
| 5987 | |||
| 5988 | void ChangeOffset(VkDeviceSize newOffset); | ||
| 5989 | |||
| 5990 | // pMappedData not null means allocation is created with MAPPED flag. | ||
| 5991 | void InitDedicatedAllocation( | ||
| 5992 | uint32_t memoryTypeIndex, | ||
| 5993 | VkDeviceMemory hMemory, | ||
| 5994 | VmaSuballocationType suballocationType, | ||
| 5995 | void* pMappedData, | ||
| 5996 | VkDeviceSize size) | ||
| 5997 | { | ||
| 5998 | ✗ | VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); | |
| 5999 | ✗ | VMA_ASSERT(hMemory != VK_NULL_HANDLE); | |
| 6000 | ✗ | m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED; | |
| 6001 | ✗ | m_Alignment = 0; | |
| 6002 | ✗ | m_Size = size; | |
| 6003 | ✗ | m_MemoryTypeIndex = memoryTypeIndex; | |
| 6004 | ✗ | m_SuballocationType = (uint8_t)suballocationType; | |
| 6005 | ✗ | m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; | |
| 6006 | ✗ | m_DedicatedAllocation.m_hMemory = hMemory; | |
| 6007 | ✗ | m_DedicatedAllocation.m_pMappedData = pMappedData; | |
| 6008 | ✗ | } | |
| 6009 | |||
| 6010 | ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; } | ||
| 6011 | VkDeviceSize GetAlignment() const { return m_Alignment; } | ||
| 6012 | VkDeviceSize GetSize() const { return m_Size; } | ||
| 6013 | bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; } | ||
| 6014 | void* GetUserData() const { return m_pUserData; } | ||
| 6015 | void SetUserData(VmaAllocator hAllocator, void* pUserData); | ||
| 6016 | VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; } | ||
| 6017 | |||
| 6018 | VmaDeviceMemoryBlock* GetBlock() const | ||
| 6019 | { | ||
| 6020 | ✗ | VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); | |
| 6021 | ✗ | return m_BlockAllocation.m_Block; | |
| 6022 | } | ||
| 6023 | VkDeviceSize GetOffset() const; | ||
| 6024 | VkDeviceMemory GetMemory() const; | ||
| 6025 | uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } | ||
| 6026 | bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; } | ||
| 6027 | void* GetMappedData() const; | ||
| 6028 | bool CanBecomeLost() const; | ||
| 6029 | |||
| 6030 | uint32_t GetLastUseFrameIndex() const | ||
| 6031 | { | ||
| 6032 | ✗ | return m_LastUseFrameIndex.load(); | |
| 6033 | } | ||
| 6034 | bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired) | ||
| 6035 | { | ||
| 6036 | ✗ | return m_LastUseFrameIndex.compare_exchange_weak(expected, desired); | |
| 6037 | } | ||
| 6038 | /* | ||
| 6039 | - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex, | ||
| 6040 | makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true. | ||
| 6041 | - Else, returns false. | ||
| 6042 | |||
| 6043 | If hAllocation is already lost, assert - you should not call it then. | ||
| 6044 | If hAllocation was not created with CAN_BECOME_LOST_BIT, assert. | ||
| 6045 | */ | ||
| 6046 | bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); | ||
| 6047 | |||
| 6048 | void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo) | ||
| 6049 | { | ||
| 6050 | ✗ | VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED); | |
| 6051 | ✗ | outInfo.blockCount = 1; | |
| 6052 | ✗ | outInfo.allocationCount = 1; | |
| 6053 | ✗ | outInfo.unusedRangeCount = 0; | |
| 6054 | ✗ | outInfo.usedBytes = m_Size; | |
| 6055 | ✗ | outInfo.unusedBytes = 0; | |
| 6056 | ✗ | outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size; | |
| 6057 | ✗ | outInfo.unusedRangeSizeMin = UINT64_MAX; | |
| 6058 | ✗ | outInfo.unusedRangeSizeMax = 0; | |
| 6059 | ✗ | } | |
| 6060 | |||
| 6061 | void BlockAllocMap(); | ||
| 6062 | void BlockAllocUnmap(); | ||
| 6063 | VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData); | ||
| 6064 | void DedicatedAllocUnmap(VmaAllocator hAllocator); | ||
| 6065 | |||
| 6066 | #if VMA_STATS_STRING_ENABLED | ||
| 6067 | uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; } | ||
| 6068 | uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; } | ||
| 6069 | |||
| 6070 | void InitBufferImageUsage(uint32_t bufferImageUsage) | ||
| 6071 | { | ||
| 6072 | ✗ | VMA_ASSERT(m_BufferImageUsage == 0); | |
| 6073 | ✗ | m_BufferImageUsage = bufferImageUsage; | |
| 6074 | ✗ | } | |
| 6075 | |||
| 6076 | void PrintParameters(class VmaJsonWriter& json) const; | ||
| 6077 | #endif | ||
| 6078 | |||
| 6079 | private: | ||
| 6080 | VkDeviceSize m_Alignment; | ||
| 6081 | VkDeviceSize m_Size; | ||
| 6082 | void* m_pUserData; | ||
| 6083 | VMA_ATOMIC_UINT32 m_LastUseFrameIndex; | ||
| 6084 | uint32_t m_MemoryTypeIndex; | ||
| 6085 | uint8_t m_Type; // ALLOCATION_TYPE | ||
| 6086 | uint8_t m_SuballocationType; // VmaSuballocationType | ||
| 6087 | // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT. | ||
| 6088 | // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory(). | ||
| 6089 | uint8_t m_MapCount; | ||
| 6090 | uint8_t m_Flags; // enum FLAGS | ||
| 6091 | |||
| 6092 | // Allocation out of VmaDeviceMemoryBlock. | ||
| 6093 | struct BlockAllocation | ||
| 6094 | { | ||
| 6095 | VmaDeviceMemoryBlock* m_Block; | ||
| 6096 | VkDeviceSize m_Offset; | ||
| 6097 | bool m_CanBecomeLost; | ||
| 6098 | }; | ||
| 6099 | |||
| 6100 | // Allocation for an object that has its own private VkDeviceMemory. | ||
| 6101 | struct DedicatedAllocation | ||
| 6102 | { | ||
| 6103 | VkDeviceMemory m_hMemory; | ||
| 6104 | void* m_pMappedData; // Not null means memory is mapped. | ||
| 6105 | }; | ||
| 6106 | |||
| 6107 | union | ||
| 6108 | { | ||
| 6109 | // Allocation out of VmaDeviceMemoryBlock. | ||
| 6110 | BlockAllocation m_BlockAllocation; | ||
| 6111 | // Allocation for an object that has its own private VkDeviceMemory. | ||
| 6112 | DedicatedAllocation m_DedicatedAllocation; | ||
| 6113 | }; | ||
| 6114 | |||
| 6115 | #if VMA_STATS_STRING_ENABLED | ||
| 6116 | uint32_t m_CreationFrameIndex; | ||
| 6117 | uint32_t m_BufferImageUsage; // 0 if unknown. | ||
| 6118 | #endif | ||
| 6119 | |||
| 6120 | void FreeUserDataString(VmaAllocator hAllocator); | ||
| 6121 | }; | ||
| 6122 | |||
| 6123 | /* | ||
| 6124 | Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as | ||
| 6125 | allocated memory block or free. | ||
| 6126 | */ | ||
| 6127 | struct VmaSuballocation | ||
| 6128 | { | ||
| 6129 | VkDeviceSize offset; | ||
| 6130 | VkDeviceSize size; | ||
| 6131 | VmaAllocation hAllocation; | ||
| 6132 | VmaSuballocationType type; | ||
| 6133 | }; | ||
| 6134 | |||
| 6135 | // Comparator for offsets. | ||
| 6136 | struct VmaSuballocationOffsetLess | ||
| 6137 | { | ||
| 6138 | bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const | ||
| 6139 | { | ||
| 6140 | ✗ | return lhs.offset < rhs.offset; | |
| 6141 | } | ||
| 6142 | }; | ||
| 6143 | struct VmaSuballocationOffsetGreater | ||
| 6144 | { | ||
| 6145 | bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const | ||
| 6146 | { | ||
| 6147 | ✗ | return lhs.offset > rhs.offset; | |
| 6148 | } | ||
| 6149 | }; | ||
| 6150 | |||
| 6151 | typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList; | ||
| 6152 | |||
| 6153 | // Cost of one additional allocation lost, as equivalent in bytes. | ||
| 6154 | static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576; | ||
| 6155 | |||
| 6156 | enum class VmaAllocationRequestType | ||
| 6157 | { | ||
| 6158 | Normal, | ||
| 6159 | // Used by "Linear" algorithm. | ||
| 6160 | UpperAddress, | ||
| 6161 | EndOf1st, | ||
| 6162 | EndOf2nd, | ||
| 6163 | }; | ||
| 6164 | |||
| 6165 | /* | ||
| 6166 | Parameters of planned allocation inside a VmaDeviceMemoryBlock. | ||
| 6167 | |||
| 6168 | If canMakeOtherLost was false: | ||
| 6169 | - item points to a FREE suballocation. | ||
| 6170 | - itemsToMakeLostCount is 0. | ||
| 6171 | |||
| 6172 | If canMakeOtherLost was true: | ||
| 6173 | - item points to first of sequence of suballocations, which are either FREE, | ||
| 6174 | or point to VmaAllocations that can become lost. | ||
| 6175 | - itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for | ||
| 6176 | the requested allocation to succeed. | ||
| 6177 | */ | ||
| 6178 | struct VmaAllocationRequest | ||
| 6179 | { | ||
| 6180 | VkDeviceSize offset; | ||
| 6181 | VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation. | ||
| 6182 | VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation. | ||
| 6183 | VmaSuballocationList::iterator item; | ||
| 6184 | size_t itemsToMakeLostCount; | ||
| 6185 | void* customData; | ||
| 6186 | VmaAllocationRequestType type; | ||
| 6187 | |||
| 6188 | VkDeviceSize CalcCost() const | ||
| 6189 | { | ||
| 6190 | ✗ | return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST; | |
| 6191 | } | ||
| 6192 | }; | ||
| 6193 | |||
| 6194 | /* | ||
| 6195 | Data structure used for bookkeeping of allocations and unused ranges of memory | ||
| 6196 | in a single VkDeviceMemory block. | ||
| 6197 | */ | ||
| 6198 | class VmaBlockMetadata | ||
| 6199 | { | ||
| 6200 | public: | ||
| 6201 | VmaBlockMetadata(VmaAllocator hAllocator); | ||
| 6202 | virtual ~VmaBlockMetadata() { } | ||
| 6203 | virtual void Init(VkDeviceSize size) { m_Size = size; } | ||
| 6204 | |||
| 6205 | // Validates all data structures inside this object. If not valid, returns false. | ||
| 6206 | virtual bool Validate() const = 0; | ||
| 6207 | VkDeviceSize GetSize() const { return m_Size; } | ||
| 6208 | virtual size_t GetAllocationCount() const = 0; | ||
| 6209 | virtual VkDeviceSize GetSumFreeSize() const = 0; | ||
| 6210 | virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0; | ||
| 6211 | // Returns true if this block is empty - contains only single free suballocation. | ||
| 6212 | virtual bool IsEmpty() const = 0; | ||
| 6213 | |||
| 6214 | virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0; | ||
| 6215 | // Shouldn't modify blockCount. | ||
| 6216 | virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0; | ||
| 6217 | |||
| 6218 | #if VMA_STATS_STRING_ENABLED | ||
| 6219 | virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0; | ||
| 6220 | #endif | ||
| 6221 | |||
| 6222 | // Tries to find a place for suballocation with given parameters inside this block. | ||
| 6223 | // If succeeded, fills pAllocationRequest and returns true. | ||
| 6224 | // If failed, returns false. | ||
| 6225 | virtual bool CreateAllocationRequest( | ||
| 6226 | uint32_t currentFrameIndex, | ||
| 6227 | uint32_t frameInUseCount, | ||
| 6228 | VkDeviceSize bufferImageGranularity, | ||
| 6229 | VkDeviceSize allocSize, | ||
| 6230 | VkDeviceSize allocAlignment, | ||
| 6231 | bool upperAddress, | ||
| 6232 | VmaSuballocationType allocType, | ||
| 6233 | bool canMakeOtherLost, | ||
| 6234 | // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags. | ||
| 6235 | uint32_t strategy, | ||
| 6236 | VmaAllocationRequest* pAllocationRequest) = 0; | ||
| 6237 | |||
| 6238 | virtual bool MakeRequestedAllocationsLost( | ||
| 6239 | uint32_t currentFrameIndex, | ||
| 6240 | uint32_t frameInUseCount, | ||
| 6241 | VmaAllocationRequest* pAllocationRequest) = 0; | ||
| 6242 | |||
| 6243 | virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0; | ||
| 6244 | |||
| 6245 | virtual VkResult CheckCorruption(const void* pBlockData) = 0; | ||
| 6246 | |||
| 6247 | // Makes actual allocation based on request. Request must already be checked and valid. | ||
| 6248 | virtual void Alloc( | ||
| 6249 | const VmaAllocationRequest& request, | ||
| 6250 | VmaSuballocationType type, | ||
| 6251 | VkDeviceSize allocSize, | ||
| 6252 | VmaAllocation hAllocation) = 0; | ||
| 6253 | |||
| 6254 | // Frees suballocation assigned to given memory region. | ||
| 6255 | virtual void Free(const VmaAllocation allocation) = 0; | ||
| 6256 | virtual void FreeAtOffset(VkDeviceSize offset) = 0; | ||
| 6257 | |||
| 6258 | protected: | ||
| 6259 | const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; } | ||
| 6260 | |||
| 6261 | #if VMA_STATS_STRING_ENABLED | ||
| 6262 | void PrintDetailedMap_Begin(class VmaJsonWriter& json, | ||
| 6263 | VkDeviceSize unusedBytes, | ||
| 6264 | size_t allocationCount, | ||
| 6265 | size_t unusedRangeCount) const; | ||
| 6266 | void PrintDetailedMap_Allocation(class VmaJsonWriter& json, | ||
| 6267 | VkDeviceSize offset, | ||
| 6268 | VmaAllocation hAllocation) const; | ||
| 6269 | void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, | ||
| 6270 | VkDeviceSize offset, | ||
| 6271 | VkDeviceSize size) const; | ||
| 6272 | void PrintDetailedMap_End(class VmaJsonWriter& json) const; | ||
| 6273 | #endif | ||
| 6274 | |||
| 6275 | private: | ||
| 6276 | VkDeviceSize m_Size; | ||
| 6277 | const VkAllocationCallbacks* m_pAllocationCallbacks; | ||
| 6278 | }; | ||
| 6279 | |||
| 6280 | #define VMA_VALIDATE(cond) do { if(!(cond)) { \ | ||
| 6281 | VMA_ASSERT(0 && "Validation failed: " #cond); \ | ||
| 6282 | return false; \ | ||
| 6283 | } } while(false) | ||
| 6284 | |||
| 6285 | class VmaBlockMetadata_Generic : public VmaBlockMetadata | ||
| 6286 | { | ||
| 6287 | VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic) | ||
| 6288 | public: | ||
| 6289 | VmaBlockMetadata_Generic(VmaAllocator hAllocator); | ||
| 6290 | virtual ~VmaBlockMetadata_Generic(); | ||
| 6291 | virtual void Init(VkDeviceSize size); | ||
| 6292 | |||
| 6293 | virtual bool Validate() const; | ||
| 6294 | virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; } | ||
| 6295 | virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } | ||
| 6296 | virtual VkDeviceSize GetUnusedRangeSizeMax() const; | ||
| 6297 | virtual bool IsEmpty() const; | ||
| 6298 | |||
| 6299 | virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; | ||
| 6300 | virtual void AddPoolStats(VmaPoolStats& inoutStats) const; | ||
| 6301 | |||
| 6302 | #if VMA_STATS_STRING_ENABLED | ||
| 6303 | virtual void PrintDetailedMap(class VmaJsonWriter& json) const; | ||
| 6304 | #endif | ||
| 6305 | |||
| 6306 | virtual bool CreateAllocationRequest( | ||
| 6307 | uint32_t currentFrameIndex, | ||
| 6308 | uint32_t frameInUseCount, | ||
| 6309 | VkDeviceSize bufferImageGranularity, | ||
| 6310 | VkDeviceSize allocSize, | ||
| 6311 | VkDeviceSize allocAlignment, | ||
| 6312 | bool upperAddress, | ||
| 6313 | VmaSuballocationType allocType, | ||
| 6314 | bool canMakeOtherLost, | ||
| 6315 | uint32_t strategy, | ||
| 6316 | VmaAllocationRequest* pAllocationRequest); | ||
| 6317 | |||
| 6318 | virtual bool MakeRequestedAllocationsLost( | ||
| 6319 | uint32_t currentFrameIndex, | ||
| 6320 | uint32_t frameInUseCount, | ||
| 6321 | VmaAllocationRequest* pAllocationRequest); | ||
| 6322 | |||
| 6323 | virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); | ||
| 6324 | |||
| 6325 | virtual VkResult CheckCorruption(const void* pBlockData); | ||
| 6326 | |||
| 6327 | virtual void Alloc( | ||
| 6328 | const VmaAllocationRequest& request, | ||
| 6329 | VmaSuballocationType type, | ||
| 6330 | VkDeviceSize allocSize, | ||
| 6331 | VmaAllocation hAllocation); | ||
| 6332 | |||
| 6333 | virtual void Free(const VmaAllocation allocation); | ||
| 6334 | virtual void FreeAtOffset(VkDeviceSize offset); | ||
| 6335 | |||
| 6336 | //////////////////////////////////////////////////////////////////////////////// | ||
| 6337 | // For defragmentation | ||
| 6338 | |||
| 6339 | bool IsBufferImageGranularityConflictPossible( | ||
| 6340 | VkDeviceSize bufferImageGranularity, | ||
| 6341 | VmaSuballocationType& inOutPrevSuballocType) const; | ||
| 6342 | |||
| 6343 | private: | ||
| 6344 | friend class VmaDefragmentationAlgorithm_Generic; | ||
| 6345 | friend class VmaDefragmentationAlgorithm_Fast; | ||
| 6346 | |||
| 6347 | uint32_t m_FreeCount; | ||
| 6348 | VkDeviceSize m_SumFreeSize; | ||
| 6349 | VmaSuballocationList m_Suballocations; | ||
| 6350 | // Suballocations that are free and have size greater than certain threshold. | ||
| 6351 | // Sorted by size, ascending. | ||
| 6352 | VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize; | ||
| 6353 | |||
| 6354 | bool ValidateFreeSuballocationList() const; | ||
| 6355 | |||
| 6356 | // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem. | ||
| 6357 | // If yes, fills pOffset and returns true. If no, returns false. | ||
| 6358 | bool CheckAllocation( | ||
| 6359 | uint32_t currentFrameIndex, | ||
| 6360 | uint32_t frameInUseCount, | ||
| 6361 | VkDeviceSize bufferImageGranularity, | ||
| 6362 | VkDeviceSize allocSize, | ||
| 6363 | VkDeviceSize allocAlignment, | ||
| 6364 | VmaSuballocationType allocType, | ||
| 6365 | VmaSuballocationList::const_iterator suballocItem, | ||
| 6366 | bool canMakeOtherLost, | ||
| 6367 | VkDeviceSize* pOffset, | ||
| 6368 | size_t* itemsToMakeLostCount, | ||
| 6369 | VkDeviceSize* pSumFreeSize, | ||
| 6370 | VkDeviceSize* pSumItemSize) const; | ||
| 6371 | // Given free suballocation, it merges it with following one, which must also be free. | ||
| 6372 | void MergeFreeWithNext(VmaSuballocationList::iterator item); | ||
| 6373 | // Releases given suballocation, making it free. | ||
| 6374 | // Merges it with adjacent free suballocations if applicable. | ||
| 6375 | // Returns iterator to new free suballocation at this place. | ||
| 6376 | VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem); | ||
| 6377 | // Given free suballocation, it inserts it into sorted list of | ||
| 6378 | // m_FreeSuballocationsBySize if it's suitable. | ||
| 6379 | void RegisterFreeSuballocation(VmaSuballocationList::iterator item); | ||
| 6380 | // Given free suballocation, it removes it from sorted list of | ||
| 6381 | // m_FreeSuballocationsBySize if it's suitable. | ||
| 6382 | void UnregisterFreeSuballocation(VmaSuballocationList::iterator item); | ||
| 6383 | }; | ||
| 6384 | |||
| 6385 | /* | ||
| 6386 | Allocations and their references in internal data structure look like this: | ||
| 6387 | |||
| 6388 | if(m_2ndVectorMode == SECOND_VECTOR_EMPTY): | ||
| 6389 | |||
| 6390 | 0 +-------+ | ||
| 6391 | | | | ||
| 6392 | | | | ||
| 6393 | | | | ||
| 6394 | +-------+ | ||
| 6395 | | Alloc | 1st[m_1stNullItemsBeginCount] | ||
| 6396 | +-------+ | ||
| 6397 | | Alloc | 1st[m_1stNullItemsBeginCount + 1] | ||
| 6398 | +-------+ | ||
| 6399 | | ... | | ||
| 6400 | +-------+ | ||
| 6401 | | Alloc | 1st[1st.size() - 1] | ||
| 6402 | +-------+ | ||
| 6403 | | | | ||
| 6404 | | | | ||
| 6405 | | | | ||
| 6406 | GetSize() +-------+ | ||
| 6407 | |||
| 6408 | if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER): | ||
| 6409 | |||
| 6410 | 0 +-------+ | ||
| 6411 | | Alloc | 2nd[0] | ||
| 6412 | +-------+ | ||
| 6413 | | Alloc | 2nd[1] | ||
| 6414 | +-------+ | ||
| 6415 | | ... | | ||
| 6416 | +-------+ | ||
| 6417 | | Alloc | 2nd[2nd.size() - 1] | ||
| 6418 | +-------+ | ||
| 6419 | | | | ||
| 6420 | | | | ||
| 6421 | | | | ||
| 6422 | +-------+ | ||
| 6423 | | Alloc | 1st[m_1stNullItemsBeginCount] | ||
| 6424 | +-------+ | ||
| 6425 | | Alloc | 1st[m_1stNullItemsBeginCount + 1] | ||
| 6426 | +-------+ | ||
| 6427 | | ... | | ||
| 6428 | +-------+ | ||
| 6429 | | Alloc | 1st[1st.size() - 1] | ||
| 6430 | +-------+ | ||
| 6431 | | | | ||
| 6432 | GetSize() +-------+ | ||
| 6433 | |||
| 6434 | if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK): | ||
| 6435 | |||
| 6436 | 0 +-------+ | ||
| 6437 | | | | ||
| 6438 | | | | ||
| 6439 | | | | ||
| 6440 | +-------+ | ||
| 6441 | | Alloc | 1st[m_1stNullItemsBeginCount] | ||
| 6442 | +-------+ | ||
| 6443 | | Alloc | 1st[m_1stNullItemsBeginCount + 1] | ||
| 6444 | +-------+ | ||
| 6445 | | ... | | ||
| 6446 | +-------+ | ||
| 6447 | | Alloc | 1st[1st.size() - 1] | ||
| 6448 | +-------+ | ||
| 6449 | | | | ||
| 6450 | | | | ||
| 6451 | | | | ||
| 6452 | +-------+ | ||
| 6453 | | Alloc | 2nd[2nd.size() - 1] | ||
| 6454 | +-------+ | ||
| 6455 | | ... | | ||
| 6456 | +-------+ | ||
| 6457 | | Alloc | 2nd[1] | ||
| 6458 | +-------+ | ||
| 6459 | | Alloc | 2nd[0] | ||
| 6460 | GetSize() +-------+ | ||
| 6461 | |||
| 6462 | */ | ||
| 6463 | class VmaBlockMetadata_Linear : public VmaBlockMetadata | ||
| 6464 | { | ||
| 6465 | VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear) | ||
| 6466 | public: | ||
| 6467 | VmaBlockMetadata_Linear(VmaAllocator hAllocator); | ||
| 6468 | virtual ~VmaBlockMetadata_Linear(); | ||
| 6469 | virtual void Init(VkDeviceSize size); | ||
| 6470 | |||
| 6471 | virtual bool Validate() const; | ||
| 6472 | virtual size_t GetAllocationCount() const; | ||
| 6473 | virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } | ||
| 6474 | virtual VkDeviceSize GetUnusedRangeSizeMax() const; | ||
| 6475 | virtual bool IsEmpty() const { return GetAllocationCount() == 0; } | ||
| 6476 | |||
| 6477 | virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; | ||
| 6478 | virtual void AddPoolStats(VmaPoolStats& inoutStats) const; | ||
| 6479 | |||
| 6480 | #if VMA_STATS_STRING_ENABLED | ||
| 6481 | virtual void PrintDetailedMap(class VmaJsonWriter& json) const; | ||
| 6482 | #endif | ||
| 6483 | |||
| 6484 | virtual bool CreateAllocationRequest( | ||
| 6485 | uint32_t currentFrameIndex, | ||
| 6486 | uint32_t frameInUseCount, | ||
| 6487 | VkDeviceSize bufferImageGranularity, | ||
| 6488 | VkDeviceSize allocSize, | ||
| 6489 | VkDeviceSize allocAlignment, | ||
| 6490 | bool upperAddress, | ||
| 6491 | VmaSuballocationType allocType, | ||
| 6492 | bool canMakeOtherLost, | ||
| 6493 | uint32_t strategy, | ||
| 6494 | VmaAllocationRequest* pAllocationRequest); | ||
| 6495 | |||
| 6496 | virtual bool MakeRequestedAllocationsLost( | ||
| 6497 | uint32_t currentFrameIndex, | ||
| 6498 | uint32_t frameInUseCount, | ||
| 6499 | VmaAllocationRequest* pAllocationRequest); | ||
| 6500 | |||
| 6501 | virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); | ||
| 6502 | |||
| 6503 | virtual VkResult CheckCorruption(const void* pBlockData); | ||
| 6504 | |||
| 6505 | virtual void Alloc( | ||
| 6506 | const VmaAllocationRequest& request, | ||
| 6507 | VmaSuballocationType type, | ||
| 6508 | VkDeviceSize allocSize, | ||
| 6509 | VmaAllocation hAllocation); | ||
| 6510 | |||
| 6511 | virtual void Free(const VmaAllocation allocation); | ||
| 6512 | virtual void FreeAtOffset(VkDeviceSize offset); | ||
| 6513 | |||
| 6514 | private: | ||
| 6515 | /* | ||
| 6516 | There are two suballocation vectors, used in ping-pong way. | ||
| 6517 | The one with index m_1stVectorIndex is called 1st. | ||
| 6518 | The one with index (m_1stVectorIndex ^ 1) is called 2nd. | ||
| 6519 | 2nd can be non-empty only when 1st is not empty. | ||
| 6520 | When 2nd is not empty, m_2ndVectorMode indicates its mode of operation. | ||
| 6521 | */ | ||
| 6522 | typedef VmaVector< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > SuballocationVectorType; | ||
| 6523 | |||
| 6524 | enum SECOND_VECTOR_MODE | ||
| 6525 | { | ||
| 6526 | SECOND_VECTOR_EMPTY, | ||
| 6527 | /* | ||
| 6528 | Suballocations in 2nd vector are created later than the ones in 1st, but they | ||
| 6529 | all have smaller offset. | ||
| 6530 | */ | ||
| 6531 | SECOND_VECTOR_RING_BUFFER, | ||
| 6532 | /* | ||
| 6533 | Suballocations in 2nd vector are upper side of double stack. | ||
| 6534 | They all have offsets higher than those in 1st vector. | ||
| 6535 | Top of this stack means smaller offsets, but higher indices in this vector. | ||
| 6536 | */ | ||
| 6537 | SECOND_VECTOR_DOUBLE_STACK, | ||
| 6538 | }; | ||
| 6539 | |||
| 6540 | VkDeviceSize m_SumFreeSize; | ||
| 6541 | SuballocationVectorType m_Suballocations0, m_Suballocations1; | ||
| 6542 | uint32_t m_1stVectorIndex; | ||
| 6543 | SECOND_VECTOR_MODE m_2ndVectorMode; | ||
| 6544 | |||
| 6545 | SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } | ||
| 6546 | SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } | ||
| 6547 | const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } | ||
| 6548 | const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } | ||
| 6549 | |||
| 6550 | // Number of items in 1st vector with hAllocation = null at the beginning. | ||
| 6551 | size_t m_1stNullItemsBeginCount; | ||
| 6552 | // Number of other items in 1st vector with hAllocation = null somewhere in the middle. | ||
| 6553 | size_t m_1stNullItemsMiddleCount; | ||
| 6554 | // Number of items in 2nd vector with hAllocation = null. | ||
| 6555 | size_t m_2ndNullItemsCount; | ||
| 6556 | |||
| 6557 | bool ShouldCompact1st() const; | ||
| 6558 | void CleanupAfterFree(); | ||
| 6559 | |||
| 6560 | bool CreateAllocationRequest_LowerAddress( | ||
| 6561 | uint32_t currentFrameIndex, | ||
| 6562 | uint32_t frameInUseCount, | ||
| 6563 | VkDeviceSize bufferImageGranularity, | ||
| 6564 | VkDeviceSize allocSize, | ||
| 6565 | VkDeviceSize allocAlignment, | ||
| 6566 | VmaSuballocationType allocType, | ||
| 6567 | bool canMakeOtherLost, | ||
| 6568 | uint32_t strategy, | ||
| 6569 | VmaAllocationRequest* pAllocationRequest); | ||
| 6570 | bool CreateAllocationRequest_UpperAddress( | ||
| 6571 | uint32_t currentFrameIndex, | ||
| 6572 | uint32_t frameInUseCount, | ||
| 6573 | VkDeviceSize bufferImageGranularity, | ||
| 6574 | VkDeviceSize allocSize, | ||
| 6575 | VkDeviceSize allocAlignment, | ||
| 6576 | VmaSuballocationType allocType, | ||
| 6577 | bool canMakeOtherLost, | ||
| 6578 | uint32_t strategy, | ||
| 6579 | VmaAllocationRequest* pAllocationRequest); | ||
| 6580 | }; | ||
| 6581 | |||
| 6582 | /* | ||
| 6583 | - GetSize() is the original size of allocated memory block. | ||
| 6584 | - m_UsableSize is this size aligned down to a power of two. | ||
| 6585 | All allocations and calculations happen relative to m_UsableSize. | ||
| 6586 | - GetUnusableSize() is the difference between them. | ||
| 6587 | It is repoted as separate, unused range, not available for allocations. | ||
| 6588 | |||
| 6589 | Node at level 0 has size = m_UsableSize. | ||
| 6590 | Each next level contains nodes with size 2 times smaller than current level. | ||
| 6591 | m_LevelCount is the maximum number of levels to use in the current object. | ||
| 6592 | */ | ||
| 6593 | class VmaBlockMetadata_Buddy : public VmaBlockMetadata | ||
| 6594 | { | ||
| 6595 | VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy) | ||
| 6596 | public: | ||
| 6597 | VmaBlockMetadata_Buddy(VmaAllocator hAllocator); | ||
| 6598 | virtual ~VmaBlockMetadata_Buddy(); | ||
| 6599 | virtual void Init(VkDeviceSize size); | ||
| 6600 | |||
| 6601 | virtual bool Validate() const; | ||
| 6602 | virtual size_t GetAllocationCount() const { return m_AllocationCount; } | ||
| 6603 | virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); } | ||
| 6604 | virtual VkDeviceSize GetUnusedRangeSizeMax() const; | ||
| 6605 | virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; } | ||
| 6606 | |||
| 6607 | virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; | ||
| 6608 | virtual void AddPoolStats(VmaPoolStats& inoutStats) const; | ||
| 6609 | |||
| 6610 | #if VMA_STATS_STRING_ENABLED | ||
| 6611 | virtual void PrintDetailedMap(class VmaJsonWriter& json) const; | ||
| 6612 | #endif | ||
| 6613 | |||
| 6614 | virtual bool CreateAllocationRequest( | ||
| 6615 | uint32_t currentFrameIndex, | ||
| 6616 | uint32_t frameInUseCount, | ||
| 6617 | VkDeviceSize bufferImageGranularity, | ||
| 6618 | VkDeviceSize allocSize, | ||
| 6619 | VkDeviceSize allocAlignment, | ||
| 6620 | bool upperAddress, | ||
| 6621 | VmaSuballocationType allocType, | ||
| 6622 | bool canMakeOtherLost, | ||
| 6623 | uint32_t strategy, | ||
| 6624 | VmaAllocationRequest* pAllocationRequest); | ||
| 6625 | |||
| 6626 | virtual bool MakeRequestedAllocationsLost( | ||
| 6627 | uint32_t currentFrameIndex, | ||
| 6628 | uint32_t frameInUseCount, | ||
| 6629 | VmaAllocationRequest* pAllocationRequest); | ||
| 6630 | |||
| 6631 | virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); | ||
| 6632 | |||
| 6633 | virtual VkResult CheckCorruption(const void* pBlockData) { return VK_ERROR_FEATURE_NOT_PRESENT; } | ||
| 6634 | |||
| 6635 | virtual void Alloc( | ||
| 6636 | const VmaAllocationRequest& request, | ||
| 6637 | VmaSuballocationType type, | ||
| 6638 | VkDeviceSize allocSize, | ||
| 6639 | VmaAllocation hAllocation); | ||
| 6640 | |||
| 6641 | virtual void Free(const VmaAllocation allocation) { FreeAtOffset(allocation, allocation->GetOffset()); } | ||
| 6642 | virtual void FreeAtOffset(VkDeviceSize offset) { FreeAtOffset(VMA_NULL, offset); } | ||
| 6643 | |||
| 6644 | private: | ||
| 6645 | static const VkDeviceSize MIN_NODE_SIZE = 32; | ||
| 6646 | static const size_t MAX_LEVELS = 30; | ||
| 6647 | |||
| 6648 | struct ValidationContext | ||
| 6649 | { | ||
| 6650 | size_t calculatedAllocationCount; | ||
| 6651 | size_t calculatedFreeCount; | ||
| 6652 | VkDeviceSize calculatedSumFreeSize; | ||
| 6653 | |||
| 6654 | ValidationContext() : | ||
| 6655 | ✗ | calculatedAllocationCount(0), | |
| 6656 | ✗ | calculatedFreeCount(0), | |
| 6657 | ✗ | calculatedSumFreeSize(0) { } | |
| 6658 | }; | ||
| 6659 | |||
| 6660 | struct Node | ||
| 6661 | { | ||
| 6662 | VkDeviceSize offset; | ||
| 6663 | enum TYPE | ||
| 6664 | { | ||
| 6665 | TYPE_FREE, | ||
| 6666 | TYPE_ALLOCATION, | ||
| 6667 | TYPE_SPLIT, | ||
| 6668 | TYPE_COUNT | ||
| 6669 | } type; | ||
| 6670 | Node* parent; | ||
| 6671 | Node* buddy; | ||
| 6672 | |||
| 6673 | union | ||
| 6674 | { | ||
| 6675 | struct | ||
| 6676 | { | ||
| 6677 | Node* prev; | ||
| 6678 | Node* next; | ||
| 6679 | } free; | ||
| 6680 | struct | ||
| 6681 | { | ||
| 6682 | VmaAllocation alloc; | ||
| 6683 | } allocation; | ||
| 6684 | struct | ||
| 6685 | { | ||
| 6686 | Node* leftChild; | ||
| 6687 | } split; | ||
| 6688 | }; | ||
| 6689 | }; | ||
| 6690 | |||
| 6691 | // Size of the memory block aligned down to a power of two. | ||
| 6692 | VkDeviceSize m_UsableSize; | ||
| 6693 | uint32_t m_LevelCount; | ||
| 6694 | |||
| 6695 | Node* m_Root; | ||
| 6696 | struct { | ||
| 6697 | Node* front; | ||
| 6698 | Node* back; | ||
| 6699 | } m_FreeList[MAX_LEVELS]; | ||
| 6700 | // Number of nodes in the tree with type == TYPE_ALLOCATION. | ||
| 6701 | size_t m_AllocationCount; | ||
| 6702 | // Number of nodes in the tree with type == TYPE_FREE. | ||
| 6703 | size_t m_FreeCount; | ||
| 6704 | // This includes space wasted due to internal fragmentation. Doesn't include unusable size. | ||
| 6705 | VkDeviceSize m_SumFreeSize; | ||
| 6706 | |||
| 6707 | VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; } | ||
| 6708 | void DeleteNode(Node* node); | ||
| 6709 | bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const; | ||
| 6710 | uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const; | ||
| 6711 | inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; } | ||
| 6712 | // Alloc passed just for validation. Can be null. | ||
| 6713 | void FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset); | ||
| 6714 | void CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const; | ||
| 6715 | // Adds node to the front of FreeList at given level. | ||
| 6716 | // node->type must be FREE. | ||
| 6717 | // node->free.prev, next can be undefined. | ||
| 6718 | void AddToFreeListFront(uint32_t level, Node* node); | ||
| 6719 | // Removes node from FreeList at given level. | ||
| 6720 | // node->type must be FREE. | ||
| 6721 | // node->free.prev, next stay untouched. | ||
| 6722 | void RemoveFromFreeList(uint32_t level, Node* node); | ||
| 6723 | |||
| 6724 | #if VMA_STATS_STRING_ENABLED | ||
| 6725 | void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const; | ||
| 6726 | #endif | ||
| 6727 | }; | ||
| 6728 | |||
| 6729 | /* | ||
| 6730 | Represents a single block of device memory (`VkDeviceMemory`) with all the | ||
| 6731 | data about its regions (aka suballocations, #VmaAllocation), assigned and free. | ||
| 6732 | |||
| 6733 | Thread-safety: This class must be externally synchronized. | ||
| 6734 | */ | ||
| 6735 | class VmaDeviceMemoryBlock | ||
| 6736 | { | ||
| 6737 | VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock) | ||
| 6738 | public: | ||
| 6739 | VmaBlockMetadata* m_pMetadata; | ||
| 6740 | |||
| 6741 | VmaDeviceMemoryBlock(VmaAllocator hAllocator); | ||
| 6742 | |||
| 6743 | ~VmaDeviceMemoryBlock() | ||
| 6744 | { | ||
| 6745 | ✗ | VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped."); | |
| 6746 | ✗ | VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); | |
| 6747 | ✗ | } | |
| 6748 | |||
| 6749 | // Always call after construction. | ||
| 6750 | void Init( | ||
| 6751 | VmaAllocator hAllocator, | ||
| 6752 | VmaPool hParentPool, | ||
| 6753 | uint32_t newMemoryTypeIndex, | ||
| 6754 | VkDeviceMemory newMemory, | ||
| 6755 | VkDeviceSize newSize, | ||
| 6756 | uint32_t id, | ||
| 6757 | uint32_t algorithm); | ||
| 6758 | // Always call before destruction. | ||
| 6759 | void Destroy(VmaAllocator allocator); | ||
| 6760 | |||
| 6761 | VmaPool GetParentPool() const { return m_hParentPool; } | ||
| 6762 | VkDeviceMemory GetDeviceMemory() const { return m_hMemory; } | ||
| 6763 | uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } | ||
| 6764 | uint32_t GetId() const { return m_Id; } | ||
| 6765 | void* GetMappedData() const { return m_pMappedData; } | ||
| 6766 | |||
| 6767 | // Validates all data structures inside this object. If not valid, returns false. | ||
| 6768 | bool Validate() const; | ||
| 6769 | |||
| 6770 | VkResult CheckCorruption(VmaAllocator hAllocator); | ||
| 6771 | |||
| 6772 | // ppData can be null. | ||
| 6773 | VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData); | ||
| 6774 | void Unmap(VmaAllocator hAllocator, uint32_t count); | ||
| 6775 | |||
| 6776 | VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); | ||
| 6777 | VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); | ||
| 6778 | |||
| 6779 | VkResult BindBufferMemory( | ||
| 6780 | const VmaAllocator hAllocator, | ||
| 6781 | const VmaAllocation hAllocation, | ||
| 6782 | VkDeviceSize allocationLocalOffset, | ||
| 6783 | VkBuffer hBuffer, | ||
| 6784 | const void* pNext); | ||
| 6785 | VkResult BindImageMemory( | ||
| 6786 | const VmaAllocator hAllocator, | ||
| 6787 | const VmaAllocation hAllocation, | ||
| 6788 | VkDeviceSize allocationLocalOffset, | ||
| 6789 | VkImage hImage, | ||
| 6790 | const void* pNext); | ||
| 6791 | |||
| 6792 | private: | ||
| 6793 | VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. | ||
| 6794 | uint32_t m_MemoryTypeIndex; | ||
| 6795 | uint32_t m_Id; | ||
| 6796 | VkDeviceMemory m_hMemory; | ||
| 6797 | |||
| 6798 | /* | ||
| 6799 | Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory. | ||
| 6800 | Also protects m_MapCount, m_pMappedData. | ||
| 6801 | Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex. | ||
| 6802 | */ | ||
| 6803 | VMA_MUTEX m_Mutex; | ||
| 6804 | uint32_t m_MapCount; | ||
| 6805 | void* m_pMappedData; | ||
| 6806 | }; | ||
| 6807 | |||
| 6808 | struct VmaPointerLess | ||
| 6809 | { | ||
| 6810 | bool operator()(const void* lhs, const void* rhs) const | ||
| 6811 | { | ||
| 6812 | ✗ | return lhs < rhs; | |
| 6813 | } | ||
| 6814 | }; | ||
| 6815 | |||
| 6816 | struct VmaDefragmentationMove | ||
| 6817 | { | ||
| 6818 | size_t srcBlockIndex; | ||
| 6819 | size_t dstBlockIndex; | ||
| 6820 | VkDeviceSize srcOffset; | ||
| 6821 | VkDeviceSize dstOffset; | ||
| 6822 | VkDeviceSize size; | ||
| 6823 | VmaAllocation hAllocation; | ||
| 6824 | VmaDeviceMemoryBlock* pSrcBlock; | ||
| 6825 | VmaDeviceMemoryBlock* pDstBlock; | ||
| 6826 | }; | ||
| 6827 | |||
| 6828 | class VmaDefragmentationAlgorithm; | ||
| 6829 | |||
| 6830 | /* | ||
| 6831 | Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific | ||
| 6832 | Vulkan memory type. | ||
| 6833 | |||
| 6834 | Synchronized internally with a mutex. | ||
| 6835 | */ | ||
| 6836 | struct VmaBlockVector | ||
| 6837 | { | ||
| 6838 | VMA_CLASS_NO_COPY(VmaBlockVector) | ||
| 6839 | public: | ||
| 6840 | VmaBlockVector( | ||
| 6841 | VmaAllocator hAllocator, | ||
| 6842 | VmaPool hParentPool, | ||
| 6843 | uint32_t memoryTypeIndex, | ||
| 6844 | VkDeviceSize preferredBlockSize, | ||
| 6845 | size_t minBlockCount, | ||
| 6846 | size_t maxBlockCount, | ||
| 6847 | VkDeviceSize bufferImageGranularity, | ||
| 6848 | uint32_t frameInUseCount, | ||
| 6849 | bool explicitBlockSize, | ||
| 6850 | uint32_t algorithm); | ||
| 6851 | ~VmaBlockVector(); | ||
| 6852 | |||
| 6853 | VkResult CreateMinBlocks(); | ||
| 6854 | |||
| 6855 | VmaAllocator GetAllocator() const { return m_hAllocator; } | ||
| 6856 | VmaPool GetParentPool() const { return m_hParentPool; } | ||
| 6857 | bool IsCustomPool() const { return m_hParentPool != VMA_NULL; } | ||
| 6858 | uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } | ||
| 6859 | VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; } | ||
| 6860 | VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } | ||
| 6861 | uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; } | ||
| 6862 | uint32_t GetAlgorithm() const { return m_Algorithm; } | ||
| 6863 | |||
| 6864 | void GetPoolStats(VmaPoolStats* pStats); | ||
| 6865 | |||
| 6866 | bool IsEmpty(); | ||
| 6867 | bool IsCorruptionDetectionEnabled() const; | ||
| 6868 | |||
| 6869 | VkResult Allocate( | ||
| 6870 | uint32_t currentFrameIndex, | ||
| 6871 | VkDeviceSize size, | ||
| 6872 | VkDeviceSize alignment, | ||
| 6873 | const VmaAllocationCreateInfo& createInfo, | ||
| 6874 | VmaSuballocationType suballocType, | ||
| 6875 | size_t allocationCount, | ||
| 6876 | VmaAllocation* pAllocations); | ||
| 6877 | |||
| 6878 | void Free(const VmaAllocation hAllocation); | ||
| 6879 | |||
| 6880 | // Adds statistics of this BlockVector to pStats. | ||
| 6881 | void AddStats(VmaStats* pStats); | ||
| 6882 | |||
| 6883 | #if VMA_STATS_STRING_ENABLED | ||
| 6884 | void PrintDetailedMap(class VmaJsonWriter& json); | ||
| 6885 | #endif | ||
| 6886 | |||
| 6887 | void MakePoolAllocationsLost( | ||
| 6888 | uint32_t currentFrameIndex, | ||
| 6889 | size_t* pLostAllocationCount); | ||
| 6890 | VkResult CheckCorruption(); | ||
| 6891 | |||
| 6892 | // Saves results in pCtx->res. | ||
| 6893 | void Defragment( | ||
| 6894 | class VmaBlockVectorDefragmentationContext* pCtx, | ||
| 6895 | VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, | ||
| 6896 | VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, | ||
| 6897 | VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, | ||
| 6898 | VkCommandBuffer commandBuffer); | ||
| 6899 | void DefragmentationEnd( | ||
| 6900 | class VmaBlockVectorDefragmentationContext* pCtx, | ||
| 6901 | uint32_t flags, | ||
| 6902 | VmaDefragmentationStats* pStats); | ||
| 6903 | |||
| 6904 | uint32_t ProcessDefragmentations( | ||
| 6905 | class VmaBlockVectorDefragmentationContext* pCtx, | ||
| 6906 | VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves); | ||
| 6907 | |||
| 6908 | void CommitDefragmentations( | ||
| 6909 | class VmaBlockVectorDefragmentationContext* pCtx, | ||
| 6910 | VmaDefragmentationStats* pStats); | ||
| 6911 | |||
| 6912 | //////////////////////////////////////////////////////////////////////////////// | ||
| 6913 | // To be used only while the m_Mutex is locked. Used during defragmentation. | ||
| 6914 | |||
| 6915 | size_t GetBlockCount() const { return m_Blocks.size(); } | ||
| 6916 | VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; } | ||
| 6917 | size_t CalcAllocationCount() const; | ||
| 6918 | bool IsBufferImageGranularityConflictPossible() const; | ||
| 6919 | |||
| 6920 | private: | ||
| 6921 | friend class VmaDefragmentationAlgorithm_Generic; | ||
| 6922 | |||
| 6923 | const VmaAllocator m_hAllocator; | ||
| 6924 | const VmaPool m_hParentPool; | ||
| 6925 | const uint32_t m_MemoryTypeIndex; | ||
| 6926 | const VkDeviceSize m_PreferredBlockSize; | ||
| 6927 | const size_t m_MinBlockCount; | ||
| 6928 | const size_t m_MaxBlockCount; | ||
| 6929 | const VkDeviceSize m_BufferImageGranularity; | ||
| 6930 | const uint32_t m_FrameInUseCount; | ||
| 6931 | const bool m_ExplicitBlockSize; | ||
| 6932 | const uint32_t m_Algorithm; | ||
| 6933 | VMA_RW_MUTEX m_Mutex; | ||
| 6934 | |||
| 6935 | /* There can be at most one allocation that is completely empty (except when minBlockCount > 0) - | ||
| 6936 | a hysteresis to avoid pessimistic case of alternating creation and destruction of a VkDeviceMemory. */ | ||
| 6937 | bool m_HasEmptyBlock; | ||
| 6938 | // Incrementally sorted by sumFreeSize, ascending. | ||
| 6939 | VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks; | ||
| 6940 | uint32_t m_NextBlockId; | ||
| 6941 | |||
| 6942 | VkDeviceSize CalcMaxBlockSize() const; | ||
| 6943 | |||
| 6944 | // Finds and removes given block from vector. | ||
| 6945 | void Remove(VmaDeviceMemoryBlock* pBlock); | ||
| 6946 | |||
| 6947 | // Performs single step in sorting m_Blocks. They may not be fully sorted | ||
| 6948 | // after this call. | ||
| 6949 | void IncrementallySortBlocks(); | ||
| 6950 | |||
| 6951 | VkResult AllocatePage( | ||
| 6952 | uint32_t currentFrameIndex, | ||
| 6953 | VkDeviceSize size, | ||
| 6954 | VkDeviceSize alignment, | ||
| 6955 | const VmaAllocationCreateInfo& createInfo, | ||
| 6956 | VmaSuballocationType suballocType, | ||
| 6957 | VmaAllocation* pAllocation); | ||
| 6958 | |||
| 6959 | // To be used only without CAN_MAKE_OTHER_LOST flag. | ||
| 6960 | VkResult AllocateFromBlock( | ||
| 6961 | VmaDeviceMemoryBlock* pBlock, | ||
| 6962 | uint32_t currentFrameIndex, | ||
| 6963 | VkDeviceSize size, | ||
| 6964 | VkDeviceSize alignment, | ||
| 6965 | VmaAllocationCreateFlags allocFlags, | ||
| 6966 | void* pUserData, | ||
| 6967 | VmaSuballocationType suballocType, | ||
| 6968 | uint32_t strategy, | ||
| 6969 | VmaAllocation* pAllocation); | ||
| 6970 | |||
| 6971 | VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex); | ||
| 6972 | |||
| 6973 | // Saves result to pCtx->res. | ||
| 6974 | void ApplyDefragmentationMovesCpu( | ||
| 6975 | class VmaBlockVectorDefragmentationContext* pDefragCtx, | ||
| 6976 | const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves); | ||
| 6977 | // Saves result to pCtx->res. | ||
| 6978 | void ApplyDefragmentationMovesGpu( | ||
| 6979 | class VmaBlockVectorDefragmentationContext* pDefragCtx, | ||
| 6980 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, | ||
| 6981 | VkCommandBuffer commandBuffer); | ||
| 6982 | |||
| 6983 | /* | ||
| 6984 | Used during defragmentation. pDefragmentationStats is optional. It's in/out | ||
| 6985 | - updated with new data. | ||
| 6986 | */ | ||
| 6987 | void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats); | ||
| 6988 | |||
| 6989 | void UpdateHasEmptyBlock(); | ||
| 6990 | }; | ||
| 6991 | |||
| 6992 | struct VmaPool_T | ||
| 6993 | { | ||
| 6994 | VMA_CLASS_NO_COPY(VmaPool_T) | ||
| 6995 | public: | ||
| 6996 | VmaBlockVector m_BlockVector; | ||
| 6997 | |||
| 6998 | VmaPool_T( | ||
| 6999 | VmaAllocator hAllocator, | ||
| 7000 | const VmaPoolCreateInfo& createInfo, | ||
| 7001 | VkDeviceSize preferredBlockSize); | ||
| 7002 | ~VmaPool_T(); | ||
| 7003 | |||
| 7004 | uint32_t GetId() const { return m_Id; } | ||
| 7005 | void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; } | ||
| 7006 | |||
| 7007 | const char* GetName() const { return m_Name; } | ||
| 7008 | void SetName(const char* pName); | ||
| 7009 | |||
| 7010 | #if VMA_STATS_STRING_ENABLED | ||
| 7011 | //void PrintDetailedMap(class VmaStringBuilder& sb); | ||
| 7012 | #endif | ||
| 7013 | |||
| 7014 | private: | ||
| 7015 | uint32_t m_Id; | ||
| 7016 | char* m_Name; | ||
| 7017 | }; | ||
| 7018 | |||
| 7019 | /* | ||
| 7020 | Performs defragmentation: | ||
| 7021 | |||
| 7022 | - Updates `pBlockVector->m_pMetadata`. | ||
| 7023 | - Updates allocations by calling ChangeBlockAllocation() or ChangeOffset(). | ||
| 7024 | - Does not move actual data, only returns requested moves as `moves`. | ||
| 7025 | */ | ||
| 7026 | class VmaDefragmentationAlgorithm | ||
| 7027 | { | ||
| 7028 | VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm) | ||
| 7029 | public: | ||
| 7030 | VmaDefragmentationAlgorithm( | ||
| 7031 | VmaAllocator hAllocator, | ||
| 7032 | VmaBlockVector* pBlockVector, | ||
| 7033 | ✗ | uint32_t currentFrameIndex) : | |
| 7034 | ✗ | m_hAllocator(hAllocator), | |
| 7035 | ✗ | m_pBlockVector(pBlockVector), | |
| 7036 | ✗ | m_CurrentFrameIndex(currentFrameIndex) | |
| 7037 | { | ||
| 7038 | ✗ | } | |
| 7039 | virtual ~VmaDefragmentationAlgorithm() | ||
| 7040 | ✗ | { | |
| 7041 | ✗ | } | |
| 7042 | |||
| 7043 | virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0; | ||
| 7044 | virtual void AddAll() = 0; | ||
| 7045 | |||
| 7046 | virtual VkResult Defragment( | ||
| 7047 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, | ||
| 7048 | VkDeviceSize maxBytesToMove, | ||
| 7049 | uint32_t maxAllocationsToMove, | ||
| 7050 | VmaDefragmentationFlags flags) = 0; | ||
| 7051 | |||
| 7052 | virtual VkDeviceSize GetBytesMoved() const = 0; | ||
| 7053 | virtual uint32_t GetAllocationsMoved() const = 0; | ||
| 7054 | |||
| 7055 | protected: | ||
| 7056 | VmaAllocator const m_hAllocator; | ||
| 7057 | VmaBlockVector* const m_pBlockVector; | ||
| 7058 | const uint32_t m_CurrentFrameIndex; | ||
| 7059 | |||
| 7060 | struct AllocationInfo | ||
| 7061 | { | ||
| 7062 | VmaAllocation m_hAllocation; | ||
| 7063 | VkBool32* m_pChanged; | ||
| 7064 | |||
| 7065 | AllocationInfo() : | ||
| 7066 | m_hAllocation(VK_NULL_HANDLE), | ||
| 7067 | m_pChanged(VMA_NULL) | ||
| 7068 | { | ||
| 7069 | } | ||
| 7070 | AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) : | ||
| 7071 | ✗ | m_hAllocation(hAlloc), | |
| 7072 | ✗ | m_pChanged(pChanged) | |
| 7073 | { | ||
| 7074 | ✗ | } | |
| 7075 | }; | ||
| 7076 | }; | ||
| 7077 | |||
| 7078 | class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm | ||
| 7079 | { | ||
| 7080 | VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic) | ||
| 7081 | public: | ||
| 7082 | VmaDefragmentationAlgorithm_Generic( | ||
| 7083 | VmaAllocator hAllocator, | ||
| 7084 | VmaBlockVector* pBlockVector, | ||
| 7085 | uint32_t currentFrameIndex, | ||
| 7086 | bool overlappingMoveSupported); | ||
| 7087 | virtual ~VmaDefragmentationAlgorithm_Generic(); | ||
| 7088 | |||
| 7089 | virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); | ||
| 7090 | virtual void AddAll() { m_AllAllocations = true; } | ||
| 7091 | |||
| 7092 | virtual VkResult Defragment( | ||
| 7093 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, | ||
| 7094 | VkDeviceSize maxBytesToMove, | ||
| 7095 | uint32_t maxAllocationsToMove, | ||
| 7096 | VmaDefragmentationFlags flags); | ||
| 7097 | |||
| 7098 | virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } | ||
| 7099 | virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } | ||
| 7100 | |||
| 7101 | private: | ||
| 7102 | uint32_t m_AllocationCount; | ||
| 7103 | bool m_AllAllocations; | ||
| 7104 | |||
| 7105 | VkDeviceSize m_BytesMoved; | ||
| 7106 | uint32_t m_AllocationsMoved; | ||
| 7107 | |||
| 7108 | struct AllocationInfoSizeGreater | ||
| 7109 | { | ||
| 7110 | bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const | ||
| 7111 | { | ||
| 7112 | return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize(); | ||
| 7113 | } | ||
| 7114 | }; | ||
| 7115 | |||
| 7116 | struct AllocationInfoOffsetGreater | ||
| 7117 | { | ||
| 7118 | bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const | ||
| 7119 | { | ||
| 7120 | ✗ | return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset(); | |
| 7121 | } | ||
| 7122 | }; | ||
| 7123 | |||
| 7124 | struct BlockInfo | ||
| 7125 | { | ||
| 7126 | size_t m_OriginalBlockIndex; | ||
| 7127 | VmaDeviceMemoryBlock* m_pBlock; | ||
| 7128 | bool m_HasNonMovableAllocations; | ||
| 7129 | VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations; | ||
| 7130 | |||
| 7131 | BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) : | ||
| 7132 | ✗ | m_OriginalBlockIndex(SIZE_MAX), | |
| 7133 | ✗ | m_pBlock(VMA_NULL), | |
| 7134 | ✗ | m_HasNonMovableAllocations(true), | |
| 7135 | ✗ | m_Allocations(pAllocationCallbacks) | |
| 7136 | { | ||
| 7137 | ✗ | } | |
| 7138 | |||
| 7139 | void CalcHasNonMovableAllocations() | ||
| 7140 | { | ||
| 7141 | ✗ | const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount(); | |
| 7142 | ✗ | const size_t defragmentAllocCount = m_Allocations.size(); | |
| 7143 | ✗ | m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount; | |
| 7144 | ✗ | } | |
| 7145 | |||
| 7146 | void SortAllocationsBySizeDescending() | ||
| 7147 | { | ||
| 7148 | VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater()); | ||
| 7149 | } | ||
| 7150 | |||
| 7151 | void SortAllocationsByOffsetDescending() | ||
| 7152 | { | ||
| 7153 | ✗ | VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater()); | |
| 7154 | ✗ | } | |
| 7155 | }; | ||
| 7156 | |||
| 7157 | struct BlockPointerLess | ||
| 7158 | { | ||
| 7159 | bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const | ||
| 7160 | { | ||
| 7161 | ✗ | return pLhsBlockInfo->m_pBlock < pRhsBlock; | |
| 7162 | } | ||
| 7163 | bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const | ||
| 7164 | { | ||
| 7165 | ✗ | return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock; | |
| 7166 | } | ||
| 7167 | }; | ||
| 7168 | |||
| 7169 | // 1. Blocks with some non-movable allocations go first. | ||
| 7170 | // 2. Blocks with smaller sumFreeSize go first. | ||
| 7171 | struct BlockInfoCompareMoveDestination | ||
| 7172 | { | ||
| 7173 | bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const | ||
| 7174 | { | ||
| 7175 | ✗ | if (pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations) | |
| 7176 | { | ||
| 7177 | ✗ | return true; | |
| 7178 | } | ||
| 7179 | ✗ | if (!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations) | |
| 7180 | { | ||
| 7181 | ✗ | return false; | |
| 7182 | } | ||
| 7183 | ✗ | if (pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize()) | |
| 7184 | { | ||
| 7185 | ✗ | return true; | |
| 7186 | } | ||
| 7187 | ✗ | return false; | |
| 7188 | } | ||
| 7189 | }; | ||
| 7190 | |||
| 7191 | typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector; | ||
| 7192 | BlockInfoVector m_Blocks; | ||
| 7193 | |||
| 7194 | VkResult DefragmentRound( | ||
| 7195 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, | ||
| 7196 | VkDeviceSize maxBytesToMove, | ||
| 7197 | uint32_t maxAllocationsToMove, | ||
| 7198 | bool freeOldAllocations); | ||
| 7199 | |||
| 7200 | size_t CalcBlocksWithNonMovableCount() const; | ||
| 7201 | |||
| 7202 | static bool MoveMakesSense( | ||
| 7203 | size_t dstBlockIndex, VkDeviceSize dstOffset, | ||
| 7204 | size_t srcBlockIndex, VkDeviceSize srcOffset); | ||
| 7205 | }; | ||
| 7206 | |||
| 7207 | class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm | ||
| 7208 | { | ||
| 7209 | VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast) | ||
| 7210 | public: | ||
| 7211 | VmaDefragmentationAlgorithm_Fast( | ||
| 7212 | VmaAllocator hAllocator, | ||
| 7213 | VmaBlockVector* pBlockVector, | ||
| 7214 | uint32_t currentFrameIndex, | ||
| 7215 | bool overlappingMoveSupported); | ||
| 7216 | virtual ~VmaDefragmentationAlgorithm_Fast(); | ||
| 7217 | |||
| 7218 | virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { ++m_AllocationCount; } | ||
| 7219 | virtual void AddAll() { m_AllAllocations = true; } | ||
| 7220 | |||
| 7221 | virtual VkResult Defragment( | ||
| 7222 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, | ||
| 7223 | VkDeviceSize maxBytesToMove, | ||
| 7224 | uint32_t maxAllocationsToMove, | ||
| 7225 | VmaDefragmentationFlags flags); | ||
| 7226 | |||
| 7227 | virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } | ||
| 7228 | virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } | ||
| 7229 | |||
| 7230 | private: | ||
| 7231 | struct BlockInfo | ||
| 7232 | { | ||
| 7233 | size_t origBlockIndex; | ||
| 7234 | }; | ||
| 7235 | |||
| 7236 | class FreeSpaceDatabase | ||
| 7237 | { | ||
| 7238 | public: | ||
| 7239 | FreeSpaceDatabase() | ||
| 7240 | ✗ | { | |
| 7241 | ✗ | FreeSpace s = {}; | |
| 7242 | ✗ | s.blockInfoIndex = SIZE_MAX; | |
| 7243 | ✗ | for (size_t i = 0; i < MAX_COUNT; ++i) | |
| 7244 | { | ||
| 7245 | ✗ | m_FreeSpaces[i] = s; | |
| 7246 | } | ||
| 7247 | ✗ | } | |
| 7248 | |||
| 7249 | void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size) | ||
| 7250 | { | ||
| 7251 | ✗ | if (size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) | |
| 7252 | { | ||
| 7253 | ✗ | return; | |
| 7254 | } | ||
| 7255 | |||
| 7256 | // Find first invalid or the smallest structure. | ||
| 7257 | ✗ | size_t bestIndex = SIZE_MAX; | |
| 7258 | ✗ | for (size_t i = 0; i < MAX_COUNT; ++i) | |
| 7259 | { | ||
| 7260 | // Empty structure. | ||
| 7261 | ✗ | if (m_FreeSpaces[i].blockInfoIndex == SIZE_MAX) | |
| 7262 | { | ||
| 7263 | ✗ | bestIndex = i; | |
| 7264 | ✗ | break; | |
| 7265 | } | ||
| 7266 | ✗ | if (m_FreeSpaces[i].size < size && | |
| 7267 | ✗ | (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size)) | |
| 7268 | { | ||
| 7269 | ✗ | bestIndex = i; | |
| 7270 | } | ||
| 7271 | } | ||
| 7272 | |||
| 7273 | ✗ | if (bestIndex != SIZE_MAX) | |
| 7274 | { | ||
| 7275 | ✗ | m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex; | |
| 7276 | ✗ | m_FreeSpaces[bestIndex].offset = offset; | |
| 7277 | ✗ | m_FreeSpaces[bestIndex].size = size; | |
| 7278 | } | ||
| 7279 | } | ||
| 7280 | |||
| 7281 | bool Fetch(VkDeviceSize alignment, VkDeviceSize size, | ||
| 7282 | size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset) | ||
| 7283 | { | ||
| 7284 | ✗ | size_t bestIndex = SIZE_MAX; | |
| 7285 | ✗ | VkDeviceSize bestFreeSpaceAfter = 0; | |
| 7286 | ✗ | for (size_t i = 0; i < MAX_COUNT; ++i) | |
| 7287 | { | ||
| 7288 | // Structure is valid. | ||
| 7289 | ✗ | if (m_FreeSpaces[i].blockInfoIndex != SIZE_MAX) | |
| 7290 | { | ||
| 7291 | ✗ | const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment); | |
| 7292 | // Allocation fits into this structure. | ||
| 7293 | ✗ | if (dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size) | |
| 7294 | { | ||
| 7295 | ✗ | const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) - | |
| 7296 | ✗ | (dstOffset + size); | |
| 7297 | ✗ | if (bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter) | |
| 7298 | { | ||
| 7299 | ✗ | bestIndex = i; | |
| 7300 | ✗ | bestFreeSpaceAfter = freeSpaceAfter; | |
| 7301 | } | ||
| 7302 | } | ||
| 7303 | } | ||
| 7304 | } | ||
| 7305 | |||
| 7306 | ✗ | if (bestIndex != SIZE_MAX) | |
| 7307 | { | ||
| 7308 | ✗ | outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex; | |
| 7309 | ✗ | outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment); | |
| 7310 | |||
| 7311 | ✗ | if (bestFreeSpaceAfter >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) | |
| 7312 | { | ||
| 7313 | // Leave this structure for remaining empty space. | ||
| 7314 | ✗ | const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size; | |
| 7315 | ✗ | m_FreeSpaces[bestIndex].offset += alignmentPlusSize; | |
| 7316 | ✗ | m_FreeSpaces[bestIndex].size -= alignmentPlusSize; | |
| 7317 | } | ||
| 7318 | else | ||
| 7319 | { | ||
| 7320 | // This structure becomes invalid. | ||
| 7321 | ✗ | m_FreeSpaces[bestIndex].blockInfoIndex = SIZE_MAX; | |
| 7322 | } | ||
| 7323 | |||
| 7324 | ✗ | return true; | |
| 7325 | } | ||
| 7326 | |||
| 7327 | ✗ | return false; | |
| 7328 | } | ||
| 7329 | |||
| 7330 | private: | ||
| 7331 | static const size_t MAX_COUNT = 4; | ||
| 7332 | |||
| 7333 | struct FreeSpace | ||
| 7334 | { | ||
| 7335 | size_t blockInfoIndex; // SIZE_MAX means this structure is invalid. | ||
| 7336 | VkDeviceSize offset; | ||
| 7337 | VkDeviceSize size; | ||
| 7338 | } m_FreeSpaces[MAX_COUNT]; | ||
| 7339 | }; | ||
| 7340 | |||
| 7341 | const bool m_OverlappingMoveSupported; | ||
| 7342 | |||
| 7343 | uint32_t m_AllocationCount; | ||
| 7344 | bool m_AllAllocations; | ||
| 7345 | |||
| 7346 | VkDeviceSize m_BytesMoved; | ||
| 7347 | uint32_t m_AllocationsMoved; | ||
| 7348 | |||
| 7349 | VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> > m_BlockInfos; | ||
| 7350 | |||
| 7351 | void PreprocessMetadata(); | ||
| 7352 | void PostprocessMetadata(); | ||
| 7353 | void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc); | ||
| 7354 | }; | ||
| 7355 | |||
| 7356 | struct VmaBlockDefragmentationContext | ||
| 7357 | { | ||
| 7358 | enum BLOCK_FLAG | ||
| 7359 | { | ||
| 7360 | BLOCK_FLAG_USED = 0x00000001, | ||
| 7361 | }; | ||
| 7362 | uint32_t flags; | ||
| 7363 | VkBuffer hBuffer; | ||
| 7364 | }; | ||
| 7365 | |||
| 7366 | class VmaBlockVectorDefragmentationContext | ||
| 7367 | { | ||
| 7368 | VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext) | ||
| 7369 | public: | ||
| 7370 | VkResult res; | ||
| 7371 | bool mutexLocked; | ||
| 7372 | VmaVector< VmaBlockDefragmentationContext, VmaStlAllocator<VmaBlockDefragmentationContext> > blockContexts; | ||
| 7373 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > defragmentationMoves; | ||
| 7374 | uint32_t defragmentationMovesProcessed; | ||
| 7375 | uint32_t defragmentationMovesCommitted; | ||
| 7376 | bool hasDefragmentationPlan; | ||
| 7377 | |||
| 7378 | VmaBlockVectorDefragmentationContext( | ||
| 7379 | VmaAllocator hAllocator, | ||
| 7380 | VmaPool hCustomPool, // Optional. | ||
| 7381 | VmaBlockVector* pBlockVector, | ||
| 7382 | uint32_t currFrameIndex); | ||
| 7383 | ~VmaBlockVectorDefragmentationContext(); | ||
| 7384 | |||
| 7385 | VmaPool GetCustomPool() const { return m_hCustomPool; } | ||
| 7386 | VmaBlockVector* GetBlockVector() const { return m_pBlockVector; } | ||
| 7387 | VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; } | ||
| 7388 | |||
| 7389 | void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); | ||
| 7390 | void AddAll() { m_AllAllocations = true; } | ||
| 7391 | |||
| 7392 | void Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags); | ||
| 7393 | |||
| 7394 | private: | ||
| 7395 | const VmaAllocator m_hAllocator; | ||
| 7396 | // Null if not from custom pool. | ||
| 7397 | const VmaPool m_hCustomPool; | ||
| 7398 | // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors. | ||
| 7399 | VmaBlockVector* const m_pBlockVector; | ||
| 7400 | const uint32_t m_CurrFrameIndex; | ||
| 7401 | // Owner of this object. | ||
| 7402 | VmaDefragmentationAlgorithm* m_pAlgorithm; | ||
| 7403 | |||
| 7404 | struct AllocInfo | ||
| 7405 | { | ||
| 7406 | VmaAllocation hAlloc; | ||
| 7407 | VkBool32* pChanged; | ||
| 7408 | }; | ||
| 7409 | // Used between constructor and Begin. | ||
| 7410 | VmaVector< AllocInfo, VmaStlAllocator<AllocInfo> > m_Allocations; | ||
| 7411 | bool m_AllAllocations; | ||
| 7412 | }; | ||
| 7413 | |||
| 7414 | struct VmaDefragmentationContext_T | ||
| 7415 | { | ||
| 7416 | private: | ||
| 7417 | VMA_CLASS_NO_COPY(VmaDefragmentationContext_T) | ||
| 7418 | public: | ||
| 7419 | VmaDefragmentationContext_T( | ||
| 7420 | VmaAllocator hAllocator, | ||
| 7421 | uint32_t currFrameIndex, | ||
| 7422 | uint32_t flags, | ||
| 7423 | VmaDefragmentationStats* pStats); | ||
| 7424 | ~VmaDefragmentationContext_T(); | ||
| 7425 | |||
| 7426 | void AddPools(uint32_t poolCount, const VmaPool* pPools); | ||
| 7427 | void AddAllocations( | ||
| 7428 | uint32_t allocationCount, | ||
| 7429 | const VmaAllocation* pAllocations, | ||
| 7430 | VkBool32* pAllocationsChanged); | ||
| 7431 | |||
| 7432 | /* | ||
| 7433 | Returns: | ||
| 7434 | - `VK_SUCCESS` if succeeded and object can be destroyed immediately. | ||
| 7435 | - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd(). | ||
| 7436 | - Negative value if error occured and object can be destroyed immediately. | ||
| 7437 | */ | ||
| 7438 | VkResult Defragment( | ||
| 7439 | VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, | ||
| 7440 | VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, | ||
| 7441 | VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags); | ||
| 7442 | |||
| 7443 | VkResult DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo); | ||
| 7444 | VkResult DefragmentPassEnd(); | ||
| 7445 | |||
| 7446 | private: | ||
| 7447 | const VmaAllocator m_hAllocator; | ||
| 7448 | const uint32_t m_CurrFrameIndex; | ||
| 7449 | const uint32_t m_Flags; | ||
| 7450 | VmaDefragmentationStats* const m_pStats; | ||
| 7451 | |||
| 7452 | VkDeviceSize m_MaxCpuBytesToMove; | ||
| 7453 | uint32_t m_MaxCpuAllocationsToMove; | ||
| 7454 | VkDeviceSize m_MaxGpuBytesToMove; | ||
| 7455 | uint32_t m_MaxGpuAllocationsToMove; | ||
| 7456 | |||
| 7457 | // Owner of these objects. | ||
| 7458 | VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES]; | ||
| 7459 | // Owner of these objects. | ||
| 7460 | VmaVector< VmaBlockVectorDefragmentationContext*, VmaStlAllocator<VmaBlockVectorDefragmentationContext*> > m_CustomPoolContexts; | ||
| 7461 | }; | ||
| 7462 | |||
| 7463 | #if VMA_RECORDING_ENABLED | ||
| 7464 | |||
| 7465 | class VmaRecorder | ||
| 7466 | { | ||
| 7467 | public: | ||
| 7468 | VmaRecorder(); | ||
| 7469 | VkResult Init(const VmaRecordSettings& settings, bool useMutex); | ||
| 7470 | void WriteConfiguration( | ||
| 7471 | const VkPhysicalDeviceProperties& devProps, | ||
| 7472 | const VkPhysicalDeviceMemoryProperties& memProps, | ||
| 7473 | uint32_t vulkanApiVersion, | ||
| 7474 | bool dedicatedAllocationExtensionEnabled, | ||
| 7475 | bool bindMemory2ExtensionEnabled, | ||
| 7476 | bool memoryBudgetExtensionEnabled, | ||
| 7477 | bool deviceCoherentMemoryExtensionEnabled); | ||
| 7478 | ~VmaRecorder(); | ||
| 7479 | |||
| 7480 | void RecordCreateAllocator(uint32_t frameIndex); | ||
| 7481 | void RecordDestroyAllocator(uint32_t frameIndex); | ||
| 7482 | void RecordCreatePool(uint32_t frameIndex, | ||
| 7483 | const VmaPoolCreateInfo& createInfo, | ||
| 7484 | VmaPool pool); | ||
| 7485 | void RecordDestroyPool(uint32_t frameIndex, VmaPool pool); | ||
| 7486 | void RecordAllocateMemory(uint32_t frameIndex, | ||
| 7487 | const VkMemoryRequirements& vkMemReq, | ||
| 7488 | const VmaAllocationCreateInfo& createInfo, | ||
| 7489 | VmaAllocation allocation); | ||
| 7490 | void RecordAllocateMemoryPages(uint32_t frameIndex, | ||
| 7491 | const VkMemoryRequirements& vkMemReq, | ||
| 7492 | const VmaAllocationCreateInfo& createInfo, | ||
| 7493 | uint64_t allocationCount, | ||
| 7494 | const VmaAllocation* pAllocations); | ||
| 7495 | void RecordAllocateMemoryForBuffer(uint32_t frameIndex, | ||
| 7496 | const VkMemoryRequirements& vkMemReq, | ||
| 7497 | bool requiresDedicatedAllocation, | ||
| 7498 | bool prefersDedicatedAllocation, | ||
| 7499 | const VmaAllocationCreateInfo& createInfo, | ||
| 7500 | VmaAllocation allocation); | ||
| 7501 | void RecordAllocateMemoryForImage(uint32_t frameIndex, | ||
| 7502 | const VkMemoryRequirements& vkMemReq, | ||
| 7503 | bool requiresDedicatedAllocation, | ||
| 7504 | bool prefersDedicatedAllocation, | ||
| 7505 | const VmaAllocationCreateInfo& createInfo, | ||
| 7506 | VmaAllocation allocation); | ||
| 7507 | void RecordFreeMemory(uint32_t frameIndex, | ||
| 7508 | VmaAllocation allocation); | ||
| 7509 | void RecordFreeMemoryPages(uint32_t frameIndex, | ||
| 7510 | uint64_t allocationCount, | ||
| 7511 | const VmaAllocation* pAllocations); | ||
| 7512 | void RecordSetAllocationUserData(uint32_t frameIndex, | ||
| 7513 | VmaAllocation allocation, | ||
| 7514 | const void* pUserData); | ||
| 7515 | void RecordCreateLostAllocation(uint32_t frameIndex, | ||
| 7516 | VmaAllocation allocation); | ||
| 7517 | void RecordMapMemory(uint32_t frameIndex, | ||
| 7518 | VmaAllocation allocation); | ||
| 7519 | void RecordUnmapMemory(uint32_t frameIndex, | ||
| 7520 | VmaAllocation allocation); | ||
| 7521 | void RecordFlushAllocation(uint32_t frameIndex, | ||
| 7522 | VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); | ||
| 7523 | void RecordInvalidateAllocation(uint32_t frameIndex, | ||
| 7524 | VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); | ||
| 7525 | void RecordCreateBuffer(uint32_t frameIndex, | ||
| 7526 | const VkBufferCreateInfo& bufCreateInfo, | ||
| 7527 | const VmaAllocationCreateInfo& allocCreateInfo, | ||
| 7528 | VmaAllocation allocation); | ||
| 7529 | void RecordCreateImage(uint32_t frameIndex, | ||
| 7530 | const VkImageCreateInfo& imageCreateInfo, | ||
| 7531 | const VmaAllocationCreateInfo& allocCreateInfo, | ||
| 7532 | VmaAllocation allocation); | ||
| 7533 | void RecordDestroyBuffer(uint32_t frameIndex, | ||
| 7534 | VmaAllocation allocation); | ||
| 7535 | void RecordDestroyImage(uint32_t frameIndex, | ||
| 7536 | VmaAllocation allocation); | ||
| 7537 | void RecordTouchAllocation(uint32_t frameIndex, | ||
| 7538 | VmaAllocation allocation); | ||
| 7539 | void RecordGetAllocationInfo(uint32_t frameIndex, | ||
| 7540 | VmaAllocation allocation); | ||
| 7541 | void RecordMakePoolAllocationsLost(uint32_t frameIndex, | ||
| 7542 | VmaPool pool); | ||
| 7543 | void RecordDefragmentationBegin(uint32_t frameIndex, | ||
| 7544 | const VmaDefragmentationInfo2& info, | ||
| 7545 | VmaDefragmentationContext ctx); | ||
| 7546 | void RecordDefragmentationEnd(uint32_t frameIndex, | ||
| 7547 | VmaDefragmentationContext ctx); | ||
| 7548 | void RecordSetPoolName(uint32_t frameIndex, | ||
| 7549 | VmaPool pool, | ||
| 7550 | const char* name); | ||
| 7551 | |||
| 7552 | private: | ||
| 7553 | struct CallParams | ||
| 7554 | { | ||
| 7555 | uint32_t threadId; | ||
| 7556 | double time; | ||
| 7557 | }; | ||
| 7558 | |||
| 7559 | class UserDataString | ||
| 7560 | { | ||
| 7561 | public: | ||
| 7562 | UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData); | ||
| 7563 | const char* GetString() const { return m_Str; } | ||
| 7564 | |||
| 7565 | private: | ||
| 7566 | char m_PtrStr[17]; | ||
| 7567 | const char* m_Str; | ||
| 7568 | }; | ||
| 7569 | |||
| 7570 | bool m_UseMutex; | ||
| 7571 | VmaRecordFlags m_Flags; | ||
| 7572 | FILE* m_File; | ||
| 7573 | VMA_MUTEX m_FileMutex; | ||
| 7574 | std::chrono::time_point<std::chrono::high_resolution_clock> m_RecordingStartTime; | ||
| 7575 | |||
| 7576 | void GetBasicParams(CallParams& outParams); | ||
| 7577 | |||
| 7578 | // T must be a pointer type, e.g. VmaAllocation, VmaPool. | ||
| 7579 | template<typename T> | ||
| 7580 | void PrintPointerList(uint64_t count, const T* pItems) | ||
| 7581 | { | ||
| 7582 | if (count) | ||
| 7583 | { | ||
| 7584 | fprintf(m_File, "%p", pItems[0]); | ||
| 7585 | for (uint64_t i = 1; i < count; ++i) | ||
| 7586 | { | ||
| 7587 | fprintf(m_File, " %p", pItems[i]); | ||
| 7588 | } | ||
| 7589 | } | ||
| 7590 | } | ||
| 7591 | |||
| 7592 | void PrintPointerList(uint64_t count, const VmaAllocation* pItems); | ||
| 7593 | void Flush(); | ||
| 7594 | }; | ||
| 7595 | |||
| 7596 | #endif // #if VMA_RECORDING_ENABLED | ||
| 7597 | |||
| 7598 | /* | ||
| 7599 | Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects. | ||
| 7600 | */ | ||
| 7601 | class VmaAllocationObjectAllocator | ||
| 7602 | { | ||
| 7603 | VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator) | ||
| 7604 | public: | ||
| 7605 | VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks); | ||
| 7606 | |||
| 7607 | template<typename... Types> VmaAllocation Allocate(Types... args); | ||
| 7608 | void Free(VmaAllocation hAlloc); | ||
| 7609 | |||
| 7610 | private: | ||
| 7611 | VMA_MUTEX m_Mutex; | ||
| 7612 | VmaPoolAllocator<VmaAllocation_T> m_Allocator; | ||
| 7613 | }; | ||
| 7614 | |||
| 7615 | struct VmaCurrentBudgetData | ||
| 7616 | { | ||
| 7617 | VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS]; | ||
| 7618 | VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS]; | ||
| 7619 | |||
| 7620 | #if VMA_MEMORY_BUDGET | ||
| 7621 | VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch; | ||
| 7622 | VMA_RW_MUTEX m_BudgetMutex; | ||
| 7623 | uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS]; | ||
| 7624 | uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS]; | ||
| 7625 | uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS]; | ||
| 7626 | #endif // #if VMA_MEMORY_BUDGET | ||
| 7627 | |||
| 7628 | VmaCurrentBudgetData() | ||
| 7629 | ✗ | { | |
| 7630 | ✗ | for (uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex) | |
| 7631 | { | ||
| 7632 | ✗ | m_BlockBytes[heapIndex] = 0; | |
| 7633 | ✗ | m_AllocationBytes[heapIndex] = 0; | |
| 7634 | #if VMA_MEMORY_BUDGET | ||
| 7635 | ✗ | m_VulkanUsage[heapIndex] = 0; | |
| 7636 | ✗ | m_VulkanBudget[heapIndex] = 0; | |
| 7637 | ✗ | m_BlockBytesAtBudgetFetch[heapIndex] = 0; | |
| 7638 | #endif | ||
| 7639 | } | ||
| 7640 | |||
| 7641 | #if VMA_MEMORY_BUDGET | ||
| 7642 | ✗ | m_OperationsSinceBudgetFetch = 0; | |
| 7643 | #endif | ||
| 7644 | ✗ | } | |
| 7645 | |||
| 7646 | void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) | ||
| 7647 | { | ||
| 7648 | ✗ | m_AllocationBytes[heapIndex] += allocationSize; | |
| 7649 | #if VMA_MEMORY_BUDGET | ||
| 7650 | ✗ | ++m_OperationsSinceBudgetFetch; | |
| 7651 | #endif | ||
| 7652 | ✗ | } | |
| 7653 | |||
| 7654 | void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) | ||
| 7655 | { | ||
| 7656 | ✗ | VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); // DELME | |
| 7657 | ✗ | m_AllocationBytes[heapIndex] -= allocationSize; | |
| 7658 | #if VMA_MEMORY_BUDGET | ||
| 7659 | ✗ | ++m_OperationsSinceBudgetFetch; | |
| 7660 | #endif | ||
| 7661 | ✗ | } | |
| 7662 | }; | ||
| 7663 | |||
| 7664 | // Main allocator object. | ||
| 7665 | struct VmaAllocator_T | ||
| 7666 | { | ||
| 7667 | VMA_CLASS_NO_COPY(VmaAllocator_T) | ||
| 7668 | public: | ||
| 7669 | bool m_UseMutex; | ||
| 7670 | uint32_t m_VulkanApiVersion; | ||
| 7671 | bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). | ||
| 7672 | bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). | ||
| 7673 | bool m_UseExtMemoryBudget; | ||
| 7674 | bool m_UseAmdDeviceCoherentMemory; | ||
| 7675 | bool m_UseKhrBufferDeviceAddress; | ||
| 7676 | VkDevice m_hDevice; | ||
| 7677 | VkInstance m_hInstance; | ||
| 7678 | bool m_AllocationCallbacksSpecified; | ||
| 7679 | VkAllocationCallbacks m_AllocationCallbacks; | ||
| 7680 | VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks; | ||
| 7681 | VmaAllocationObjectAllocator m_AllocationObjectAllocator; | ||
| 7682 | |||
| 7683 | // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size. | ||
| 7684 | uint32_t m_HeapSizeLimitMask; | ||
| 7685 | |||
| 7686 | VkPhysicalDeviceProperties m_PhysicalDeviceProperties; | ||
| 7687 | VkPhysicalDeviceMemoryProperties m_MemProps; | ||
| 7688 | |||
| 7689 | // Default pools. | ||
| 7690 | VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; | ||
| 7691 | |||
| 7692 | // Each vector is sorted by memory (handle value). | ||
| 7693 | typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType; | ||
| 7694 | AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES]; | ||
| 7695 | VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES]; | ||
| 7696 | |||
| 7697 | VmaCurrentBudgetData m_Budget; | ||
| 7698 | |||
| 7699 | VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo); | ||
| 7700 | VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo); | ||
| 7701 | ~VmaAllocator_T(); | ||
| 7702 | |||
| 7703 | const VkAllocationCallbacks* GetAllocationCallbacks() const | ||
| 7704 | { | ||
| 7705 | ✗ | return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0; | |
| 7706 | } | ||
| 7707 | const VmaVulkanFunctions& GetVulkanFunctions() const | ||
| 7708 | { | ||
| 7709 | ✗ | return m_VulkanFunctions; | |
| 7710 | } | ||
| 7711 | |||
| 7712 | VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; } | ||
| 7713 | |||
| 7714 | VkDeviceSize GetBufferImageGranularity() const | ||
| 7715 | { | ||
| 7716 | ✗ | return VMA_MAX( | |
| 7717 | static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY), | ||
| 7718 | m_PhysicalDeviceProperties.limits.bufferImageGranularity); | ||
| 7719 | } | ||
| 7720 | |||
| 7721 | uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; } | ||
| 7722 | uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; } | ||
| 7723 | |||
| 7724 | uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const | ||
| 7725 | { | ||
| 7726 | ✗ | VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount); | |
| 7727 | ✗ | return m_MemProps.memoryTypes[memTypeIndex].heapIndex; | |
| 7728 | } | ||
| 7729 | // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT. | ||
| 7730 | bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const | ||
| 7731 | { | ||
| 7732 | ✗ | return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) == | |
| 7733 | ✗ | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; | |
| 7734 | } | ||
| 7735 | // Minimum alignment for all allocations in specific memory type. | ||
| 7736 | VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const | ||
| 7737 | { | ||
| 7738 | ✗ | return IsMemoryTypeNonCoherent(memTypeIndex) ? | |
| 7739 | ✗ | VMA_MAX((VkDeviceSize)VMA_DEBUG_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) : | |
| 7740 | ✗ | (VkDeviceSize)VMA_DEBUG_ALIGNMENT; | |
| 7741 | } | ||
| 7742 | |||
| 7743 | bool IsIntegratedGpu() const | ||
| 7744 | { | ||
| 7745 | ✗ | return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; | |
| 7746 | } | ||
| 7747 | |||
| 7748 | uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; } | ||
| 7749 | |||
| 7750 | #if VMA_RECORDING_ENABLED | ||
| 7751 | VmaRecorder* GetRecorder() const { return m_pRecorder; } | ||
| 7752 | #endif | ||
| 7753 | |||
| 7754 | void GetBufferMemoryRequirements( | ||
| 7755 | VkBuffer hBuffer, | ||
| 7756 | VkMemoryRequirements& memReq, | ||
| 7757 | bool& requiresDedicatedAllocation, | ||
| 7758 | bool& prefersDedicatedAllocation) const; | ||
| 7759 | void GetImageMemoryRequirements( | ||
| 7760 | VkImage hImage, | ||
| 7761 | VkMemoryRequirements& memReq, | ||
| 7762 | bool& requiresDedicatedAllocation, | ||
| 7763 | bool& prefersDedicatedAllocation) const; | ||
| 7764 | |||
| 7765 | // Main allocation function. | ||
| 7766 | VkResult AllocateMemory( | ||
| 7767 | const VkMemoryRequirements& vkMemReq, | ||
| 7768 | bool requiresDedicatedAllocation, | ||
| 7769 | bool prefersDedicatedAllocation, | ||
| 7770 | VkBuffer dedicatedBuffer, | ||
| 7771 | VkBufferUsageFlags dedicatedBufferUsage, // UINT32_MAX when unknown. | ||
| 7772 | VkImage dedicatedImage, | ||
| 7773 | const VmaAllocationCreateInfo& createInfo, | ||
| 7774 | VmaSuballocationType suballocType, | ||
| 7775 | size_t allocationCount, | ||
| 7776 | VmaAllocation* pAllocations); | ||
| 7777 | |||
| 7778 | // Main deallocation function. | ||
| 7779 | void FreeMemory( | ||
| 7780 | size_t allocationCount, | ||
| 7781 | const VmaAllocation* pAllocations); | ||
| 7782 | |||
| 7783 | VkResult ResizeAllocation( | ||
| 7784 | const VmaAllocation alloc, | ||
| 7785 | VkDeviceSize newSize); | ||
| 7786 | |||
| 7787 | void CalculateStats(VmaStats* pStats); | ||
| 7788 | |||
| 7789 | void GetBudget( | ||
| 7790 | VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount); | ||
| 7791 | |||
| 7792 | #if VMA_STATS_STRING_ENABLED | ||
| 7793 | void PrintDetailedMap(class VmaJsonWriter& json); | ||
| 7794 | #endif | ||
| 7795 | |||
| 7796 | VkResult DefragmentationBegin( | ||
| 7797 | const VmaDefragmentationInfo2& info, | ||
| 7798 | VmaDefragmentationStats* pStats, | ||
| 7799 | VmaDefragmentationContext* pContext); | ||
| 7800 | VkResult DefragmentationEnd( | ||
| 7801 | VmaDefragmentationContext context); | ||
| 7802 | |||
| 7803 | VkResult DefragmentationPassBegin( | ||
| 7804 | VmaDefragmentationPassInfo* pInfo, | ||
| 7805 | VmaDefragmentationContext context); | ||
| 7806 | VkResult DefragmentationPassEnd( | ||
| 7807 | VmaDefragmentationContext context); | ||
| 7808 | |||
| 7809 | void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo); | ||
| 7810 | bool TouchAllocation(VmaAllocation hAllocation); | ||
| 7811 | |||
| 7812 | VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool); | ||
| 7813 | void DestroyPool(VmaPool pool); | ||
| 7814 | void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats); | ||
| 7815 | |||
| 7816 | void SetCurrentFrameIndex(uint32_t frameIndex); | ||
| 7817 | uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); } | ||
| 7818 | |||
| 7819 | void MakePoolAllocationsLost( | ||
| 7820 | VmaPool hPool, | ||
| 7821 | size_t* pLostAllocationCount); | ||
| 7822 | VkResult CheckPoolCorruption(VmaPool hPool); | ||
| 7823 | VkResult CheckCorruption(uint32_t memoryTypeBits); | ||
| 7824 | |||
| 7825 | void CreateLostAllocation(VmaAllocation* pAllocation); | ||
| 7826 | |||
| 7827 | // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping. | ||
| 7828 | VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory); | ||
| 7829 | // Call to Vulkan function vkFreeMemory with accompanying bookkeeping. | ||
| 7830 | void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory); | ||
| 7831 | // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR. | ||
| 7832 | VkResult BindVulkanBuffer( | ||
| 7833 | VkDeviceMemory memory, | ||
| 7834 | VkDeviceSize memoryOffset, | ||
| 7835 | VkBuffer buffer, | ||
| 7836 | const void* pNext); | ||
| 7837 | // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR. | ||
| 7838 | VkResult BindVulkanImage( | ||
| 7839 | VkDeviceMemory memory, | ||
| 7840 | VkDeviceSize memoryOffset, | ||
| 7841 | VkImage image, | ||
| 7842 | const void* pNext); | ||
| 7843 | |||
| 7844 | VkResult Map(VmaAllocation hAllocation, void** ppData); | ||
| 7845 | void Unmap(VmaAllocation hAllocation); | ||
| 7846 | |||
| 7847 | VkResult BindBufferMemory( | ||
| 7848 | VmaAllocation hAllocation, | ||
| 7849 | VkDeviceSize allocationLocalOffset, | ||
| 7850 | VkBuffer hBuffer, | ||
| 7851 | const void* pNext); | ||
| 7852 | VkResult BindImageMemory( | ||
| 7853 | VmaAllocation hAllocation, | ||
| 7854 | VkDeviceSize allocationLocalOffset, | ||
| 7855 | VkImage hImage, | ||
| 7856 | const void* pNext); | ||
| 7857 | |||
| 7858 | VkResult FlushOrInvalidateAllocation( | ||
| 7859 | VmaAllocation hAllocation, | ||
| 7860 | VkDeviceSize offset, VkDeviceSize size, | ||
| 7861 | VMA_CACHE_OPERATION op); | ||
| 7862 | VkResult FlushOrInvalidateAllocations( | ||
| 7863 | uint32_t allocationCount, | ||
| 7864 | const VmaAllocation* allocations, | ||
| 7865 | const VkDeviceSize* offsets, const VkDeviceSize* sizes, | ||
| 7866 | VMA_CACHE_OPERATION op); | ||
| 7867 | |||
| 7868 | void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern); | ||
| 7869 | |||
| 7870 | /* | ||
| 7871 | Returns bit mask of memory types that can support defragmentation on GPU as | ||
| 7872 | they support creation of required buffer for copy operations. | ||
| 7873 | */ | ||
| 7874 | uint32_t GetGpuDefragmentationMemoryTypeBits(); | ||
| 7875 | |||
| 7876 | private: | ||
| 7877 | VkDeviceSize m_PreferredLargeHeapBlockSize; | ||
| 7878 | |||
| 7879 | VkPhysicalDevice m_PhysicalDevice; | ||
| 7880 | VMA_ATOMIC_UINT32 m_CurrentFrameIndex; | ||
| 7881 | VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized. | ||
| 7882 | |||
| 7883 | VMA_RW_MUTEX m_PoolsMutex; | ||
| 7884 | // Protected by m_PoolsMutex. Sorted by pointer value. | ||
| 7885 | VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools; | ||
| 7886 | uint32_t m_NextPoolId; | ||
| 7887 | |||
| 7888 | VmaVulkanFunctions m_VulkanFunctions; | ||
| 7889 | |||
| 7890 | // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types. | ||
| 7891 | uint32_t m_GlobalMemoryTypeBits; | ||
| 7892 | |||
| 7893 | #if VMA_RECORDING_ENABLED | ||
| 7894 | VmaRecorder* m_pRecorder; | ||
| 7895 | #endif | ||
| 7896 | |||
| 7897 | void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions); | ||
| 7898 | |||
| 7899 | #if VMA_STATIC_VULKAN_FUNCTIONS == 1 | ||
| 7900 | void ImportVulkanFunctions_Static(); | ||
| 7901 | #endif | ||
| 7902 | |||
| 7903 | void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions); | ||
| 7904 | |||
| 7905 | #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 | ||
| 7906 | void ImportVulkanFunctions_Dynamic(); | ||
| 7907 | #endif | ||
| 7908 | |||
| 7909 | void ValidateVulkanFunctions(); | ||
| 7910 | |||
| 7911 | VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); | ||
| 7912 | |||
| 7913 | VkResult AllocateMemoryOfType( | ||
| 7914 | VkDeviceSize size, | ||
| 7915 | VkDeviceSize alignment, | ||
| 7916 | bool dedicatedAllocation, | ||
| 7917 | VkBuffer dedicatedBuffer, | ||
| 7918 | VkBufferUsageFlags dedicatedBufferUsage, | ||
| 7919 | VkImage dedicatedImage, | ||
| 7920 | const VmaAllocationCreateInfo& createInfo, | ||
| 7921 | uint32_t memTypeIndex, | ||
| 7922 | VmaSuballocationType suballocType, | ||
| 7923 | size_t allocationCount, | ||
| 7924 | VmaAllocation* pAllocations); | ||
| 7925 | |||
| 7926 | // Helper function only to be used inside AllocateDedicatedMemory. | ||
| 7927 | VkResult AllocateDedicatedMemoryPage( | ||
| 7928 | VkDeviceSize size, | ||
| 7929 | VmaSuballocationType suballocType, | ||
| 7930 | uint32_t memTypeIndex, | ||
| 7931 | const VkMemoryAllocateInfo& allocInfo, | ||
| 7932 | bool map, | ||
| 7933 | bool isUserDataString, | ||
| 7934 | void* pUserData, | ||
| 7935 | VmaAllocation* pAllocation); | ||
| 7936 | |||
| 7937 | // Allocates and registers new VkDeviceMemory specifically for dedicated allocations. | ||
| 7938 | VkResult AllocateDedicatedMemory( | ||
| 7939 | VkDeviceSize size, | ||
| 7940 | VmaSuballocationType suballocType, | ||
| 7941 | uint32_t memTypeIndex, | ||
| 7942 | bool withinBudget, | ||
| 7943 | bool map, | ||
| 7944 | bool isUserDataString, | ||
| 7945 | void* pUserData, | ||
| 7946 | VkBuffer dedicatedBuffer, | ||
| 7947 | VkBufferUsageFlags dedicatedBufferUsage, | ||
| 7948 | VkImage dedicatedImage, | ||
| 7949 | size_t allocationCount, | ||
| 7950 | VmaAllocation* pAllocations); | ||
| 7951 | |||
| 7952 | void FreeDedicatedMemory(const VmaAllocation allocation); | ||
| 7953 | |||
| 7954 | /* | ||
| 7955 | Calculates and returns bit mask of memory types that can support defragmentation | ||
| 7956 | on GPU as they support creation of required buffer for copy operations. | ||
| 7957 | */ | ||
| 7958 | uint32_t CalculateGpuDefragmentationMemoryTypeBits() const; | ||
| 7959 | |||
| 7960 | uint32_t CalculateGlobalMemoryTypeBits() const; | ||
| 7961 | |||
| 7962 | bool GetFlushOrInvalidateRange( | ||
| 7963 | VmaAllocation allocation, | ||
| 7964 | VkDeviceSize offset, VkDeviceSize size, | ||
| 7965 | VkMappedMemoryRange& outRange) const; | ||
| 7966 | |||
| 7967 | #if VMA_MEMORY_BUDGET | ||
| 7968 | void UpdateVulkanBudget(); | ||
| 7969 | #endif // #if VMA_MEMORY_BUDGET | ||
| 7970 | }; | ||
| 7971 | |||
| 7972 | //////////////////////////////////////////////////////////////////////////////// | ||
| 7973 | // Memory allocation #2 after VmaAllocator_T definition | ||
| 7974 | |||
| 7975 | static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) | ||
| 7976 | { | ||
| 7977 | ✗ | return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment); | |
| 7978 | } | ||
| 7979 | |||
| 7980 | static void VmaFree(VmaAllocator hAllocator, void* ptr) | ||
| 7981 | { | ||
| 7982 | ✗ | VmaFree(&hAllocator->m_AllocationCallbacks, ptr); | |
| 7983 | ✗ | } | |
| 7984 | |||
| 7985 | template<typename T> | ||
| 7986 | static T* VmaAllocate(VmaAllocator hAllocator) | ||
| 7987 | { | ||
| 7988 | ✗ | return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T)); | |
| 7989 | } | ||
| 7990 | |||
| 7991 | template<typename T> | ||
| 7992 | static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count) | ||
| 7993 | { | ||
| 7994 | ✗ | return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T)); | |
| 7995 | } | ||
| 7996 | |||
| 7997 | template<typename T> | ||
| 7998 | static void vma_delete(VmaAllocator hAllocator, T* ptr) | ||
| 7999 | { | ||
| 8000 | ✗ | if (ptr != VMA_NULL) | |
| 8001 | { | ||
| 8002 | ✗ | ptr->~T(); | |
| 8003 | ✗ | VmaFree(hAllocator, ptr); | |
| 8004 | } | ||
| 8005 | ✗ | } | |
| 8006 | |||
| 8007 | template<typename T> | ||
| 8008 | static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count) | ||
| 8009 | { | ||
| 8010 | ✗ | if (ptr != VMA_NULL) | |
| 8011 | { | ||
| 8012 | ✗ | for (size_t i = count; i--; ) | |
| 8013 | ✗ | ptr[i].~T(); | |
| 8014 | ✗ | VmaFree(hAllocator, ptr); | |
| 8015 | } | ||
| 8016 | ✗ | } | |
| 8017 | |||
| 8018 | //////////////////////////////////////////////////////////////////////////////// | ||
| 8019 | // VmaStringBuilder | ||
| 8020 | |||
| 8021 | #if VMA_STATS_STRING_ENABLED | ||
| 8022 | |||
| 8023 | class VmaStringBuilder | ||
| 8024 | { | ||
| 8025 | public: | ||
| 8026 | VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { } | ||
| 8027 | size_t GetLength() const { return m_Data.size(); } | ||
| 8028 | const char* GetData() const { return m_Data.data(); } | ||
| 8029 | |||
| 8030 | void Add(char ch) { m_Data.push_back(ch); } | ||
| 8031 | void Add(const char* pStr); | ||
| 8032 | void AddNewLine() { Add('\n'); } | ||
| 8033 | void AddNumber(uint32_t num); | ||
| 8034 | void AddNumber(uint64_t num); | ||
| 8035 | void AddPointer(const void* ptr); | ||
| 8036 | |||
| 8037 | private: | ||
| 8038 | VmaVector< char, VmaStlAllocator<char> > m_Data; | ||
| 8039 | }; | ||
| 8040 | |||
| 8041 | void VmaStringBuilder::Add(const char* pStr) | ||
| 8042 | { | ||
| 8043 | ✗ | const size_t strLen = strlen(pStr); | |
| 8044 | ✗ | if (strLen > 0) | |
| 8045 | { | ||
| 8046 | ✗ | const size_t oldCount = m_Data.size(); | |
| 8047 | ✗ | m_Data.resize(oldCount + strLen); | |
| 8048 | ✗ | memcpy(m_Data.data() + oldCount, pStr, strLen); | |
| 8049 | } | ||
| 8050 | ✗ | } | |
| 8051 | |||
| 8052 | void VmaStringBuilder::AddNumber(uint32_t num) | ||
| 8053 | { | ||
| 8054 | char buf[11]; | ||
| 8055 | ✗ | buf[10] = '\0'; | |
| 8056 | ✗ | char* p = &buf[10]; | |
| 8057 | do | ||
| 8058 | { | ||
| 8059 | ✗ | *--p = '0' + (num % 10); | |
| 8060 | ✗ | num /= 10; | |
| 8061 | ✗ | } while (num); | |
| 8062 | ✗ | Add(p); | |
| 8063 | ✗ | } | |
| 8064 | |||
| 8065 | void VmaStringBuilder::AddNumber(uint64_t num) | ||
| 8066 | { | ||
| 8067 | char buf[21]; | ||
| 8068 | ✗ | buf[20] = '\0'; | |
| 8069 | ✗ | char* p = &buf[20]; | |
| 8070 | do | ||
| 8071 | { | ||
| 8072 | ✗ | *--p = '0' + (num % 10); | |
| 8073 | ✗ | num /= 10; | |
| 8074 | ✗ | } while (num); | |
| 8075 | ✗ | Add(p); | |
| 8076 | ✗ | } | |
| 8077 | |||
| 8078 | void VmaStringBuilder::AddPointer(const void* ptr) | ||
| 8079 | { | ||
| 8080 | char buf[21]; | ||
| 8081 | ✗ | VmaPtrToStr(buf, sizeof(buf), ptr); | |
| 8082 | ✗ | Add(buf); | |
| 8083 | ✗ | } | |
| 8084 | |||
| 8085 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 8086 | |||
| 8087 | //////////////////////////////////////////////////////////////////////////////// | ||
| 8088 | // VmaJsonWriter | ||
| 8089 | |||
| 8090 | #if VMA_STATS_STRING_ENABLED | ||
| 8091 | |||
| 8092 | class VmaJsonWriter | ||
| 8093 | { | ||
| 8094 | VMA_CLASS_NO_COPY(VmaJsonWriter) | ||
| 8095 | public: | ||
| 8096 | VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb); | ||
| 8097 | ~VmaJsonWriter(); | ||
| 8098 | |||
| 8099 | void BeginObject(bool singleLine = false); | ||
| 8100 | void EndObject(); | ||
| 8101 | |||
| 8102 | void BeginArray(bool singleLine = false); | ||
| 8103 | void EndArray(); | ||
| 8104 | |||
| 8105 | void WriteString(const char* pStr); | ||
| 8106 | void BeginString(const char* pStr = VMA_NULL); | ||
| 8107 | void ContinueString(const char* pStr); | ||
| 8108 | void ContinueString(uint32_t n); | ||
| 8109 | void ContinueString(uint64_t n); | ||
| 8110 | void ContinueString_Pointer(const void* ptr); | ||
| 8111 | void EndString(const char* pStr = VMA_NULL); | ||
| 8112 | |||
| 8113 | void WriteNumber(uint32_t n); | ||
| 8114 | void WriteNumber(uint64_t n); | ||
| 8115 | void WriteBool(bool b); | ||
| 8116 | void WriteNull(); | ||
| 8117 | |||
| 8118 | private: | ||
| 8119 | static const char* const INDENT; | ||
| 8120 | |||
| 8121 | enum COLLECTION_TYPE | ||
| 8122 | { | ||
| 8123 | COLLECTION_TYPE_OBJECT, | ||
| 8124 | COLLECTION_TYPE_ARRAY, | ||
| 8125 | }; | ||
| 8126 | struct StackItem | ||
| 8127 | { | ||
| 8128 | COLLECTION_TYPE type; | ||
| 8129 | uint32_t valueCount; | ||
| 8130 | bool singleLineMode; | ||
| 8131 | }; | ||
| 8132 | |||
| 8133 | VmaStringBuilder& m_SB; | ||
| 8134 | VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack; | ||
| 8135 | bool m_InsideString; | ||
| 8136 | |||
| 8137 | void BeginValue(bool isString); | ||
| 8138 | void WriteIndent(bool oneLess = false); | ||
| 8139 | }; | ||
| 8140 | |||
| 8141 | const char* const VmaJsonWriter::INDENT = " "; | ||
| 8142 | |||
| 8143 | VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) : | ||
| 8144 | ✗ | m_SB(sb), | |
| 8145 | ✗ | m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)), | |
| 8146 | ✗ | m_InsideString(false) | |
| 8147 | { | ||
| 8148 | ✗ | } | |
| 8149 | |||
| 8150 | VmaJsonWriter::~VmaJsonWriter() | ||
| 8151 | { | ||
| 8152 | ✗ | VMA_ASSERT(!m_InsideString); | |
| 8153 | ✗ | VMA_ASSERT(m_Stack.empty()); | |
| 8154 | ✗ | } | |
| 8155 | |||
| 8156 | void VmaJsonWriter::BeginObject(bool singleLine) | ||
| 8157 | { | ||
| 8158 | ✗ | VMA_ASSERT(!m_InsideString); | |
| 8159 | |||
| 8160 | ✗ | BeginValue(false); | |
| 8161 | ✗ | m_SB.Add('{'); | |
| 8162 | |||
| 8163 | StackItem item; | ||
| 8164 | ✗ | item.type = COLLECTION_TYPE_OBJECT; | |
| 8165 | ✗ | item.valueCount = 0; | |
| 8166 | ✗ | item.singleLineMode = singleLine; | |
| 8167 | ✗ | m_Stack.push_back(item); | |
| 8168 | ✗ | } | |
| 8169 | |||
| 8170 | void VmaJsonWriter::EndObject() | ||
| 8171 | { | ||
| 8172 | ✗ | VMA_ASSERT(!m_InsideString); | |
| 8173 | |||
| 8174 | ✗ | WriteIndent(true); | |
| 8175 | ✗ | m_SB.Add('}'); | |
| 8176 | |||
| 8177 | ✗ | VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT); | |
| 8178 | ✗ | m_Stack.pop_back(); | |
| 8179 | ✗ | } | |
| 8180 | |||
| 8181 | void VmaJsonWriter::BeginArray(bool singleLine) | ||
| 8182 | { | ||
| 8183 | ✗ | VMA_ASSERT(!m_InsideString); | |
| 8184 | |||
| 8185 | ✗ | BeginValue(false); | |
| 8186 | ✗ | m_SB.Add('['); | |
| 8187 | |||
| 8188 | StackItem item; | ||
| 8189 | ✗ | item.type = COLLECTION_TYPE_ARRAY; | |
| 8190 | ✗ | item.valueCount = 0; | |
| 8191 | ✗ | item.singleLineMode = singleLine; | |
| 8192 | ✗ | m_Stack.push_back(item); | |
| 8193 | ✗ | } | |
| 8194 | |||
| 8195 | void VmaJsonWriter::EndArray() | ||
| 8196 | { | ||
| 8197 | ✗ | VMA_ASSERT(!m_InsideString); | |
| 8198 | |||
| 8199 | ✗ | WriteIndent(true); | |
| 8200 | ✗ | m_SB.Add(']'); | |
| 8201 | |||
| 8202 | ✗ | VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY); | |
| 8203 | ✗ | m_Stack.pop_back(); | |
| 8204 | ✗ | } | |
| 8205 | |||
| 8206 | void VmaJsonWriter::WriteString(const char* pStr) | ||
| 8207 | { | ||
| 8208 | ✗ | BeginString(pStr); | |
| 8209 | ✗ | EndString(); | |
| 8210 | ✗ | } | |
| 8211 | |||
| 8212 | void VmaJsonWriter::BeginString(const char* pStr) | ||
| 8213 | { | ||
| 8214 | ✗ | VMA_ASSERT(!m_InsideString); | |
| 8215 | |||
| 8216 | ✗ | BeginValue(true); | |
| 8217 | ✗ | m_SB.Add('"'); | |
| 8218 | ✗ | m_InsideString = true; | |
| 8219 | ✗ | if (pStr != VMA_NULL && pStr[0] != '\0') | |
| 8220 | { | ||
| 8221 | ✗ | ContinueString(pStr); | |
| 8222 | } | ||
| 8223 | ✗ | } | |
| 8224 | |||
| 8225 | void VmaJsonWriter::ContinueString(const char* pStr) | ||
| 8226 | { | ||
| 8227 | ✗ | VMA_ASSERT(m_InsideString); | |
| 8228 | |||
| 8229 | ✗ | const size_t strLen = strlen(pStr); | |
| 8230 | ✗ | for (size_t i = 0; i < strLen; ++i) | |
| 8231 | { | ||
| 8232 | ✗ | char ch = pStr[i]; | |
| 8233 | ✗ | if (ch == '\\') | |
| 8234 | { | ||
| 8235 | ✗ | m_SB.Add("\\\\"); | |
| 8236 | } | ||
| 8237 | ✗ | else if (ch == '"') | |
| 8238 | { | ||
| 8239 | ✗ | m_SB.Add("\\\""); | |
| 8240 | } | ||
| 8241 | ✗ | else if (ch >= 32) | |
| 8242 | { | ||
| 8243 | ✗ | m_SB.Add(ch); | |
| 8244 | } | ||
| 8245 | ✗ | else switch (ch) | |
| 8246 | { | ||
| 8247 | ✗ | case '\b': | |
| 8248 | ✗ | m_SB.Add("\\b"); | |
| 8249 | ✗ | break; | |
| 8250 | ✗ | case '\f': | |
| 8251 | ✗ | m_SB.Add("\\f"); | |
| 8252 | ✗ | break; | |
| 8253 | ✗ | case '\n': | |
| 8254 | ✗ | m_SB.Add("\\n"); | |
| 8255 | ✗ | break; | |
| 8256 | ✗ | case '\r': | |
| 8257 | ✗ | m_SB.Add("\\r"); | |
| 8258 | ✗ | break; | |
| 8259 | ✗ | case '\t': | |
| 8260 | ✗ | m_SB.Add("\\t"); | |
| 8261 | ✗ | break; | |
| 8262 | ✗ | default: | |
| 8263 | ✗ | VMA_ASSERT(0 && "Character not currently supported."); | |
| 8264 | break; | ||
| 8265 | } | ||
| 8266 | } | ||
| 8267 | ✗ | } | |
| 8268 | |||
| 8269 | void VmaJsonWriter::ContinueString(uint32_t n) | ||
| 8270 | { | ||
| 8271 | ✗ | VMA_ASSERT(m_InsideString); | |
| 8272 | ✗ | m_SB.AddNumber(n); | |
| 8273 | ✗ | } | |
| 8274 | |||
| 8275 | void VmaJsonWriter::ContinueString(uint64_t n) | ||
| 8276 | { | ||
| 8277 | ✗ | VMA_ASSERT(m_InsideString); | |
| 8278 | ✗ | m_SB.AddNumber(n); | |
| 8279 | ✗ | } | |
| 8280 | |||
| 8281 | void VmaJsonWriter::ContinueString_Pointer(const void* ptr) | ||
| 8282 | { | ||
| 8283 | ✗ | VMA_ASSERT(m_InsideString); | |
| 8284 | ✗ | m_SB.AddPointer(ptr); | |
| 8285 | ✗ | } | |
| 8286 | |||
| 8287 | void VmaJsonWriter::EndString(const char* pStr) | ||
| 8288 | { | ||
| 8289 | ✗ | VMA_ASSERT(m_InsideString); | |
| 8290 | ✗ | if (pStr != VMA_NULL && pStr[0] != '\0') | |
| 8291 | { | ||
| 8292 | ✗ | ContinueString(pStr); | |
| 8293 | } | ||
| 8294 | ✗ | m_SB.Add('"'); | |
| 8295 | ✗ | m_InsideString = false; | |
| 8296 | ✗ | } | |
| 8297 | |||
| 8298 | void VmaJsonWriter::WriteNumber(uint32_t n) | ||
| 8299 | { | ||
| 8300 | ✗ | VMA_ASSERT(!m_InsideString); | |
| 8301 | ✗ | BeginValue(false); | |
| 8302 | ✗ | m_SB.AddNumber(n); | |
| 8303 | ✗ | } | |
| 8304 | |||
| 8305 | void VmaJsonWriter::WriteNumber(uint64_t n) | ||
| 8306 | { | ||
| 8307 | ✗ | VMA_ASSERT(!m_InsideString); | |
| 8308 | ✗ | BeginValue(false); | |
| 8309 | ✗ | m_SB.AddNumber(n); | |
| 8310 | ✗ | } | |
| 8311 | |||
| 8312 | void VmaJsonWriter::WriteBool(bool b) | ||
| 8313 | { | ||
| 8314 | ✗ | VMA_ASSERT(!m_InsideString); | |
| 8315 | ✗ | BeginValue(false); | |
| 8316 | ✗ | m_SB.Add(b ? "true" : "false"); | |
| 8317 | ✗ | } | |
| 8318 | |||
| 8319 | void VmaJsonWriter::WriteNull() | ||
| 8320 | { | ||
| 8321 | ✗ | VMA_ASSERT(!m_InsideString); | |
| 8322 | ✗ | BeginValue(false); | |
| 8323 | ✗ | m_SB.Add("null"); | |
| 8324 | ✗ | } | |
| 8325 | |||
| 8326 | void VmaJsonWriter::BeginValue(bool isString) | ||
| 8327 | { | ||
| 8328 | ✗ | if (!m_Stack.empty()) | |
| 8329 | { | ||
| 8330 | ✗ | StackItem& currItem = m_Stack.back(); | |
| 8331 | ✗ | if (currItem.type == COLLECTION_TYPE_OBJECT && | |
| 8332 | ✗ | currItem.valueCount % 2 == 0) | |
| 8333 | { | ||
| 8334 | ✗ | VMA_ASSERT(isString); | |
| 8335 | } | ||
| 8336 | |||
| 8337 | ✗ | if (currItem.type == COLLECTION_TYPE_OBJECT && | |
| 8338 | ✗ | currItem.valueCount % 2 != 0) | |
| 8339 | { | ||
| 8340 | ✗ | m_SB.Add(": "); | |
| 8341 | } | ||
| 8342 | ✗ | else if (currItem.valueCount > 0) | |
| 8343 | { | ||
| 8344 | ✗ | m_SB.Add(", "); | |
| 8345 | ✗ | WriteIndent(); | |
| 8346 | } | ||
| 8347 | else | ||
| 8348 | { | ||
| 8349 | ✗ | WriteIndent(); | |
| 8350 | } | ||
| 8351 | ✗ | ++currItem.valueCount; | |
| 8352 | } | ||
| 8353 | ✗ | } | |
| 8354 | |||
| 8355 | void VmaJsonWriter::WriteIndent(bool oneLess) | ||
| 8356 | { | ||
| 8357 | ✗ | if (!m_Stack.empty() && !m_Stack.back().singleLineMode) | |
| 8358 | { | ||
| 8359 | ✗ | m_SB.AddNewLine(); | |
| 8360 | |||
| 8361 | ✗ | size_t count = m_Stack.size(); | |
| 8362 | ✗ | if (count > 0 && oneLess) | |
| 8363 | { | ||
| 8364 | ✗ | --count; | |
| 8365 | } | ||
| 8366 | ✗ | for (size_t i = 0; i < count; ++i) | |
| 8367 | { | ||
| 8368 | ✗ | m_SB.Add(INDENT); | |
| 8369 | } | ||
| 8370 | } | ||
| 8371 | ✗ | } | |
| 8372 | |||
| 8373 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 8374 | |||
| 8375 | //////////////////////////////////////////////////////////////////////////////// | ||
| 8376 | |||
| 8377 | void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData) | ||
| 8378 | { | ||
| 8379 | ✗ | if (IsUserDataString()) | |
| 8380 | { | ||
| 8381 | ✗ | VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData); | |
| 8382 | |||
| 8383 | ✗ | FreeUserDataString(hAllocator); | |
| 8384 | |||
| 8385 | ✗ | if (pUserData != VMA_NULL) | |
| 8386 | { | ||
| 8387 | ✗ | m_pUserData = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), (const char*)pUserData); | |
| 8388 | } | ||
| 8389 | } | ||
| 8390 | else | ||
| 8391 | { | ||
| 8392 | ✗ | m_pUserData = pUserData; | |
| 8393 | } | ||
| 8394 | ✗ | } | |
| 8395 | |||
| 8396 | void VmaAllocation_T::ChangeBlockAllocation( | ||
| 8397 | VmaAllocator hAllocator, | ||
| 8398 | VmaDeviceMemoryBlock* block, | ||
| 8399 | VkDeviceSize offset) | ||
| 8400 | { | ||
| 8401 | ✗ | VMA_ASSERT(block != VMA_NULL); | |
| 8402 | ✗ | VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); | |
| 8403 | |||
| 8404 | // Move mapping reference counter from old block to new block. | ||
| 8405 | ✗ | if (block != m_BlockAllocation.m_Block) | |
| 8406 | { | ||
| 8407 | ✗ | uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP; | |
| 8408 | ✗ | if (IsPersistentMap()) | |
| 8409 | ✗ | ++mapRefCount; | |
| 8410 | ✗ | m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount); | |
| 8411 | ✗ | block->Map(hAllocator, mapRefCount, VMA_NULL); | |
| 8412 | } | ||
| 8413 | |||
| 8414 | ✗ | m_BlockAllocation.m_Block = block; | |
| 8415 | ✗ | m_BlockAllocation.m_Offset = offset; | |
| 8416 | ✗ | } | |
| 8417 | |||
| 8418 | void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset) | ||
| 8419 | { | ||
| 8420 | ✗ | VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); | |
| 8421 | ✗ | m_BlockAllocation.m_Offset = newOffset; | |
| 8422 | ✗ | } | |
| 8423 | |||
| 8424 | VkDeviceSize VmaAllocation_T::GetOffset() const | ||
| 8425 | { | ||
| 8426 | ✗ | switch (m_Type) | |
| 8427 | { | ||
| 8428 | ✗ | case ALLOCATION_TYPE_BLOCK: | |
| 8429 | ✗ | return m_BlockAllocation.m_Offset; | |
| 8430 | ✗ | case ALLOCATION_TYPE_DEDICATED: | |
| 8431 | ✗ | return 0; | |
| 8432 | ✗ | default: | |
| 8433 | ✗ | VMA_ASSERT(0); | |
| 8434 | return 0; | ||
| 8435 | } | ||
| 8436 | } | ||
| 8437 | |||
| 8438 | VkDeviceMemory VmaAllocation_T::GetMemory() const | ||
| 8439 | { | ||
| 8440 | ✗ | switch (m_Type) | |
| 8441 | { | ||
| 8442 | ✗ | case ALLOCATION_TYPE_BLOCK: | |
| 8443 | ✗ | return m_BlockAllocation.m_Block->GetDeviceMemory(); | |
| 8444 | ✗ | case ALLOCATION_TYPE_DEDICATED: | |
| 8445 | ✗ | return m_DedicatedAllocation.m_hMemory; | |
| 8446 | ✗ | default: | |
| 8447 | ✗ | VMA_ASSERT(0); | |
| 8448 | return VK_NULL_HANDLE; | ||
| 8449 | } | ||
| 8450 | } | ||
| 8451 | |||
| 8452 | void* VmaAllocation_T::GetMappedData() const | ||
| 8453 | { | ||
| 8454 | ✗ | switch (m_Type) | |
| 8455 | { | ||
| 8456 | ✗ | case ALLOCATION_TYPE_BLOCK: | |
| 8457 | ✗ | if (m_MapCount != 0) | |
| 8458 | { | ||
| 8459 | ✗ | void* pBlockData = m_BlockAllocation.m_Block->GetMappedData(); | |
| 8460 | ✗ | VMA_ASSERT(pBlockData != VMA_NULL); | |
| 8461 | ✗ | return (char*)pBlockData + m_BlockAllocation.m_Offset; | |
| 8462 | } | ||
| 8463 | else | ||
| 8464 | { | ||
| 8465 | ✗ | return VMA_NULL; | |
| 8466 | } | ||
| 8467 | break; | ||
| 8468 | ✗ | case ALLOCATION_TYPE_DEDICATED: | |
| 8469 | ✗ | VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0)); | |
| 8470 | ✗ | return m_DedicatedAllocation.m_pMappedData; | |
| 8471 | ✗ | default: | |
| 8472 | ✗ | VMA_ASSERT(0); | |
| 8473 | return VMA_NULL; | ||
| 8474 | } | ||
| 8475 | } | ||
| 8476 | |||
| 8477 | bool VmaAllocation_T::CanBecomeLost() const | ||
| 8478 | { | ||
| 8479 | ✗ | switch (m_Type) | |
| 8480 | { | ||
| 8481 | ✗ | case ALLOCATION_TYPE_BLOCK: | |
| 8482 | ✗ | return m_BlockAllocation.m_CanBecomeLost; | |
| 8483 | ✗ | case ALLOCATION_TYPE_DEDICATED: | |
| 8484 | ✗ | return false; | |
| 8485 | ✗ | default: | |
| 8486 | ✗ | VMA_ASSERT(0); | |
| 8487 | return false; | ||
| 8488 | } | ||
| 8489 | } | ||
| 8490 | |||
| 8491 | bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) | ||
| 8492 | { | ||
| 8493 | ✗ | VMA_ASSERT(CanBecomeLost()); | |
| 8494 | |||
| 8495 | /* | ||
| 8496 | Warning: This is a carefully designed algorithm. | ||
| 8497 | Do not modify unless you really know what you're doing :) | ||
| 8498 | */ | ||
| 8499 | ✗ | uint32_t localLastUseFrameIndex = GetLastUseFrameIndex(); | |
| 8500 | for (;;) | ||
| 8501 | { | ||
| 8502 | ✗ | if (localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) | |
| 8503 | { | ||
| 8504 | ✗ | VMA_ASSERT(0); | |
| 8505 | return false; | ||
| 8506 | } | ||
| 8507 | ✗ | else if (localLastUseFrameIndex + frameInUseCount >= currentFrameIndex) | |
| 8508 | { | ||
| 8509 | ✗ | return false; | |
| 8510 | } | ||
| 8511 | else // Last use time earlier than current time. | ||
| 8512 | { | ||
| 8513 | ✗ | if (CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST)) | |
| 8514 | { | ||
| 8515 | // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST. | ||
| 8516 | // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock. | ||
| 8517 | ✗ | return true; | |
| 8518 | } | ||
| 8519 | } | ||
| 8520 | } | ||
| 8521 | } | ||
| 8522 | |||
| 8523 | #if VMA_STATS_STRING_ENABLED | ||
| 8524 | |||
| 8525 | // Correspond to values of enum VmaSuballocationType. | ||
| 8526 | static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = { | ||
| 8527 | "FREE", | ||
| 8528 | "UNKNOWN", | ||
| 8529 | "BUFFER", | ||
| 8530 | "IMAGE_UNKNOWN", | ||
| 8531 | "IMAGE_LINEAR", | ||
| 8532 | "IMAGE_OPTIMAL", | ||
| 8533 | }; | ||
| 8534 | |||
| 8535 | void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const | ||
| 8536 | { | ||
| 8537 | ✗ | json.WriteString("Type"); | |
| 8538 | ✗ | json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]); | |
| 8539 | |||
| 8540 | ✗ | json.WriteString("Size"); | |
| 8541 | ✗ | json.WriteNumber(m_Size); | |
| 8542 | |||
| 8543 | ✗ | if (m_pUserData != VMA_NULL) | |
| 8544 | { | ||
| 8545 | ✗ | json.WriteString("UserData"); | |
| 8546 | ✗ | if (IsUserDataString()) | |
| 8547 | { | ||
| 8548 | ✗ | json.WriteString((const char*)m_pUserData); | |
| 8549 | } | ||
| 8550 | else | ||
| 8551 | { | ||
| 8552 | ✗ | json.BeginString(); | |
| 8553 | ✗ | json.ContinueString_Pointer(m_pUserData); | |
| 8554 | ✗ | json.EndString(); | |
| 8555 | } | ||
| 8556 | } | ||
| 8557 | |||
| 8558 | ✗ | json.WriteString("CreationFrameIndex"); | |
| 8559 | ✗ | json.WriteNumber(m_CreationFrameIndex); | |
| 8560 | |||
| 8561 | ✗ | json.WriteString("LastUseFrameIndex"); | |
| 8562 | ✗ | json.WriteNumber(GetLastUseFrameIndex()); | |
| 8563 | |||
| 8564 | ✗ | if (m_BufferImageUsage != 0) | |
| 8565 | { | ||
| 8566 | ✗ | json.WriteString("Usage"); | |
| 8567 | ✗ | json.WriteNumber(m_BufferImageUsage); | |
| 8568 | } | ||
| 8569 | ✗ | } | |
| 8570 | |||
| 8571 | #endif | ||
| 8572 | |||
| 8573 | void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator) | ||
| 8574 | { | ||
| 8575 | ✗ | VMA_ASSERT(IsUserDataString()); | |
| 8576 | ✗ | VmaFreeString(hAllocator->GetAllocationCallbacks(), (char*)m_pUserData); | |
| 8577 | ✗ | m_pUserData = VMA_NULL; | |
| 8578 | ✗ | } | |
| 8579 | |||
| 8580 | void VmaAllocation_T::BlockAllocMap() | ||
| 8581 | { | ||
| 8582 | ✗ | VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); | |
| 8583 | |||
| 8584 | ✗ | if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) | |
| 8585 | { | ||
| 8586 | ✗ | ++m_MapCount; | |
| 8587 | } | ||
| 8588 | else | ||
| 8589 | { | ||
| 8590 | ✗ | VMA_ASSERT(0 && "Allocation mapped too many times simultaneously."); | |
| 8591 | } | ||
| 8592 | ✗ | } | |
| 8593 | |||
| 8594 | void VmaAllocation_T::BlockAllocUnmap() | ||
| 8595 | { | ||
| 8596 | ✗ | VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); | |
| 8597 | |||
| 8598 | ✗ | if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) | |
| 8599 | { | ||
| 8600 | ✗ | --m_MapCount; | |
| 8601 | } | ||
| 8602 | else | ||
| 8603 | { | ||
| 8604 | ✗ | VMA_ASSERT(0 && "Unmapping allocation not previously mapped."); | |
| 8605 | } | ||
| 8606 | ✗ | } | |
| 8607 | |||
| 8608 | VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData) | ||
| 8609 | { | ||
| 8610 | ✗ | VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); | |
| 8611 | |||
| 8612 | ✗ | if (m_MapCount != 0) | |
| 8613 | { | ||
| 8614 | ✗ | if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) | |
| 8615 | { | ||
| 8616 | ✗ | VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL); | |
| 8617 | ✗ | *ppData = m_DedicatedAllocation.m_pMappedData; | |
| 8618 | ✗ | ++m_MapCount; | |
| 8619 | ✗ | return VK_SUCCESS; | |
| 8620 | } | ||
| 8621 | else | ||
| 8622 | { | ||
| 8623 | ✗ | VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously."); | |
| 8624 | return VK_ERROR_MEMORY_MAP_FAILED; | ||
| 8625 | } | ||
| 8626 | } | ||
| 8627 | else | ||
| 8628 | { | ||
| 8629 | ✗ | VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( | |
| 8630 | hAllocator->m_hDevice, | ||
| 8631 | m_DedicatedAllocation.m_hMemory, | ||
| 8632 | 0, // offset | ||
| 8633 | VK_WHOLE_SIZE, | ||
| 8634 | 0, // flags | ||
| 8635 | ppData); | ||
| 8636 | ✗ | if (result == VK_SUCCESS) | |
| 8637 | { | ||
| 8638 | ✗ | m_DedicatedAllocation.m_pMappedData = *ppData; | |
| 8639 | ✗ | m_MapCount = 1; | |
| 8640 | } | ||
| 8641 | ✗ | return result; | |
| 8642 | } | ||
| 8643 | } | ||
| 8644 | |||
| 8645 | void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) | ||
| 8646 | { | ||
| 8647 | ✗ | VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); | |
| 8648 | |||
| 8649 | ✗ | if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) | |
| 8650 | { | ||
| 8651 | ✗ | --m_MapCount; | |
| 8652 | ✗ | if (m_MapCount == 0) | |
| 8653 | { | ||
| 8654 | ✗ | m_DedicatedAllocation.m_pMappedData = VMA_NULL; | |
| 8655 | ✗ | (*hAllocator->GetVulkanFunctions().vkUnmapMemory)( | |
| 8656 | hAllocator->m_hDevice, | ||
| 8657 | m_DedicatedAllocation.m_hMemory); | ||
| 8658 | } | ||
| 8659 | } | ||
| 8660 | else | ||
| 8661 | { | ||
| 8662 | ✗ | VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped."); | |
| 8663 | } | ||
| 8664 | ✗ | } | |
| 8665 | |||
| 8666 | #if VMA_STATS_STRING_ENABLED | ||
| 8667 | |||
| 8668 | static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat) | ||
| 8669 | { | ||
| 8670 | ✗ | json.BeginObject(); | |
| 8671 | |||
| 8672 | ✗ | json.WriteString("Blocks"); | |
| 8673 | ✗ | json.WriteNumber(stat.blockCount); | |
| 8674 | |||
| 8675 | ✗ | json.WriteString("Allocations"); | |
| 8676 | ✗ | json.WriteNumber(stat.allocationCount); | |
| 8677 | |||
| 8678 | ✗ | json.WriteString("UnusedRanges"); | |
| 8679 | ✗ | json.WriteNumber(stat.unusedRangeCount); | |
| 8680 | |||
| 8681 | ✗ | json.WriteString("UsedBytes"); | |
| 8682 | ✗ | json.WriteNumber(stat.usedBytes); | |
| 8683 | |||
| 8684 | ✗ | json.WriteString("UnusedBytes"); | |
| 8685 | ✗ | json.WriteNumber(stat.unusedBytes); | |
| 8686 | |||
| 8687 | ✗ | if (stat.allocationCount > 1) | |
| 8688 | { | ||
| 8689 | ✗ | json.WriteString("AllocationSize"); | |
| 8690 | ✗ | json.BeginObject(true); | |
| 8691 | ✗ | json.WriteString("Min"); | |
| 8692 | ✗ | json.WriteNumber(stat.allocationSizeMin); | |
| 8693 | ✗ | json.WriteString("Avg"); | |
| 8694 | ✗ | json.WriteNumber(stat.allocationSizeAvg); | |
| 8695 | ✗ | json.WriteString("Max"); | |
| 8696 | ✗ | json.WriteNumber(stat.allocationSizeMax); | |
| 8697 | ✗ | json.EndObject(); | |
| 8698 | } | ||
| 8699 | |||
| 8700 | ✗ | if (stat.unusedRangeCount > 1) | |
| 8701 | { | ||
| 8702 | ✗ | json.WriteString("UnusedRangeSize"); | |
| 8703 | ✗ | json.BeginObject(true); | |
| 8704 | ✗ | json.WriteString("Min"); | |
| 8705 | ✗ | json.WriteNumber(stat.unusedRangeSizeMin); | |
| 8706 | ✗ | json.WriteString("Avg"); | |
| 8707 | ✗ | json.WriteNumber(stat.unusedRangeSizeAvg); | |
| 8708 | ✗ | json.WriteString("Max"); | |
| 8709 | ✗ | json.WriteNumber(stat.unusedRangeSizeMax); | |
| 8710 | ✗ | json.EndObject(); | |
| 8711 | } | ||
| 8712 | |||
| 8713 | ✗ | json.EndObject(); | |
| 8714 | ✗ | } | |
| 8715 | |||
| 8716 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 8717 | |||
| 8718 | struct VmaSuballocationItemSizeLess | ||
| 8719 | { | ||
| 8720 | bool operator()( | ||
| 8721 | const VmaSuballocationList::iterator lhs, | ||
| 8722 | const VmaSuballocationList::iterator rhs) const | ||
| 8723 | { | ||
| 8724 | ✗ | return lhs->size < rhs->size; | |
| 8725 | } | ||
| 8726 | bool operator()( | ||
| 8727 | const VmaSuballocationList::iterator lhs, | ||
| 8728 | VkDeviceSize rhsSize) const | ||
| 8729 | { | ||
| 8730 | ✗ | return lhs->size < rhsSize; | |
| 8731 | } | ||
| 8732 | }; | ||
| 8733 | |||
| 8734 | |||
| 8735 | //////////////////////////////////////////////////////////////////////////////// | ||
| 8736 | // class VmaBlockMetadata | ||
| 8737 | |||
| 8738 | VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) : | ||
| 8739 | ✗ | m_Size(0), | |
| 8740 | ✗ | m_pAllocationCallbacks(hAllocator->GetAllocationCallbacks()) | |
| 8741 | { | ||
| 8742 | ✗ | } | |
| 8743 | |||
| 8744 | #if VMA_STATS_STRING_ENABLED | ||
| 8745 | |||
| 8746 | void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json, | ||
| 8747 | VkDeviceSize unusedBytes, | ||
| 8748 | size_t allocationCount, | ||
| 8749 | size_t unusedRangeCount) const | ||
| 8750 | { | ||
| 8751 | ✗ | json.BeginObject(); | |
| 8752 | |||
| 8753 | ✗ | json.WriteString("TotalBytes"); | |
| 8754 | ✗ | json.WriteNumber(GetSize()); | |
| 8755 | |||
| 8756 | ✗ | json.WriteString("UnusedBytes"); | |
| 8757 | ✗ | json.WriteNumber(unusedBytes); | |
| 8758 | |||
| 8759 | ✗ | json.WriteString("Allocations"); | |
| 8760 | ✗ | json.WriteNumber((uint64_t)allocationCount); | |
| 8761 | |||
| 8762 | ✗ | json.WriteString("UnusedRanges"); | |
| 8763 | ✗ | json.WriteNumber((uint64_t)unusedRangeCount); | |
| 8764 | |||
| 8765 | ✗ | json.WriteString("Suballocations"); | |
| 8766 | ✗ | json.BeginArray(); | |
| 8767 | ✗ | } | |
| 8768 | |||
| 8769 | void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json, | ||
| 8770 | VkDeviceSize offset, | ||
| 8771 | VmaAllocation hAllocation) const | ||
| 8772 | { | ||
| 8773 | ✗ | json.BeginObject(true); | |
| 8774 | |||
| 8775 | ✗ | json.WriteString("Offset"); | |
| 8776 | ✗ | json.WriteNumber(offset); | |
| 8777 | |||
| 8778 | ✗ | hAllocation->PrintParameters(json); | |
| 8779 | |||
| 8780 | ✗ | json.EndObject(); | |
| 8781 | ✗ | } | |
| 8782 | |||
| 8783 | void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, | ||
| 8784 | VkDeviceSize offset, | ||
| 8785 | VkDeviceSize size) const | ||
| 8786 | { | ||
| 8787 | ✗ | json.BeginObject(true); | |
| 8788 | |||
| 8789 | ✗ | json.WriteString("Offset"); | |
| 8790 | ✗ | json.WriteNumber(offset); | |
| 8791 | |||
| 8792 | ✗ | json.WriteString("Type"); | |
| 8793 | ✗ | json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]); | |
| 8794 | |||
| 8795 | ✗ | json.WriteString("Size"); | |
| 8796 | ✗ | json.WriteNumber(size); | |
| 8797 | |||
| 8798 | ✗ | json.EndObject(); | |
| 8799 | ✗ | } | |
| 8800 | |||
| 8801 | void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const | ||
| 8802 | { | ||
| 8803 | ✗ | json.EndArray(); | |
| 8804 | ✗ | json.EndObject(); | |
| 8805 | ✗ | } | |
| 8806 | |||
| 8807 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 8808 | |||
| 8809 | //////////////////////////////////////////////////////////////////////////////// | ||
| 8810 | // class VmaBlockMetadata_Generic | ||
| 8811 | |||
| 8812 | VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(VmaAllocator hAllocator) : | ||
| 8813 | VmaBlockMetadata(hAllocator), | ||
| 8814 | ✗ | m_FreeCount(0), | |
| 8815 | ✗ | m_SumFreeSize(0), | |
| 8816 | ✗ | m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())), | |
| 8817 | ✗ | m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks())) | |
| 8818 | { | ||
| 8819 | ✗ | } | |
| 8820 | |||
| 8821 | VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic() | ||
| 8822 | { | ||
| 8823 | ✗ | } | |
| 8824 | |||
| 8825 | void VmaBlockMetadata_Generic::Init(VkDeviceSize size) | ||
| 8826 | { | ||
| 8827 | ✗ | VmaBlockMetadata::Init(size); | |
| 8828 | |||
| 8829 | ✗ | m_FreeCount = 1; | |
| 8830 | ✗ | m_SumFreeSize = size; | |
| 8831 | |||
| 8832 | ✗ | VmaSuballocation suballoc = {}; | |
| 8833 | ✗ | suballoc.offset = 0; | |
| 8834 | ✗ | suballoc.size = size; | |
| 8835 | ✗ | suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; | |
| 8836 | ✗ | suballoc.hAllocation = VK_NULL_HANDLE; | |
| 8837 | |||
| 8838 | ✗ | VMA_ASSERT(size > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); | |
| 8839 | ✗ | m_Suballocations.push_back(suballoc); | |
| 8840 | ✗ | VmaSuballocationList::iterator suballocItem = m_Suballocations.end(); | |
| 8841 | ✗ | --suballocItem; | |
| 8842 | ✗ | m_FreeSuballocationsBySize.push_back(suballocItem); | |
| 8843 | ✗ | } | |
| 8844 | |||
| 8845 | bool VmaBlockMetadata_Generic::Validate() const | ||
| 8846 | { | ||
| 8847 | ✗ | VMA_VALIDATE(!m_Suballocations.empty()); | |
| 8848 | |||
| 8849 | // Expected offset of new suballocation as calculated from previous ones. | ||
| 8850 | ✗ | VkDeviceSize calculatedOffset = 0; | |
| 8851 | // Expected number of free suballocations as calculated from traversing their list. | ||
| 8852 | ✗ | uint32_t calculatedFreeCount = 0; | |
| 8853 | // Expected sum size of free suballocations as calculated from traversing their list. | ||
| 8854 | ✗ | VkDeviceSize calculatedSumFreeSize = 0; | |
| 8855 | // Expected number of free suballocations that should be registered in | ||
| 8856 | // m_FreeSuballocationsBySize calculated from traversing their list. | ||
| 8857 | ✗ | size_t freeSuballocationsToRegister = 0; | |
| 8858 | // True if previous visited suballocation was free. | ||
| 8859 | ✗ | bool prevFree = false; | |
| 8860 | |||
| 8861 | ✗ | for (VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); | |
| 8862 | ✗ | suballocItem != m_Suballocations.cend(); | |
| 8863 | ✗ | ++suballocItem) | |
| 8864 | { | ||
| 8865 | ✗ | const VmaSuballocation& subAlloc = *suballocItem; | |
| 8866 | |||
| 8867 | // Actual offset of this suballocation doesn't match expected one. | ||
| 8868 | ✗ | VMA_VALIDATE(subAlloc.offset == calculatedOffset); | |
| 8869 | |||
| 8870 | ✗ | const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 8871 | // Two adjacent free suballocations are invalid. They should be merged. | ||
| 8872 | ✗ | VMA_VALIDATE(!prevFree || !currFree); | |
| 8873 | |||
| 8874 | ✗ | VMA_VALIDATE(currFree == (subAlloc.hAllocation == VK_NULL_HANDLE)); | |
| 8875 | |||
| 8876 | ✗ | if (currFree) | |
| 8877 | { | ||
| 8878 | ✗ | calculatedSumFreeSize += subAlloc.size; | |
| 8879 | ✗ | ++calculatedFreeCount; | |
| 8880 | ✗ | if (subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) | |
| 8881 | { | ||
| 8882 | ✗ | ++freeSuballocationsToRegister; | |
| 8883 | } | ||
| 8884 | |||
| 8885 | // Margin required between allocations - every free space must be at least that large. | ||
| 8886 | VMA_VALIDATE(subAlloc.size >= VMA_DEBUG_MARGIN); | ||
| 8887 | } | ||
| 8888 | else | ||
| 8889 | { | ||
| 8890 | ✗ | VMA_VALIDATE(subAlloc.hAllocation->GetOffset() == subAlloc.offset); | |
| 8891 | ✗ | VMA_VALIDATE(subAlloc.hAllocation->GetSize() == subAlloc.size); | |
| 8892 | |||
| 8893 | // Margin required between allocations - previous allocation must be free. | ||
| 8894 | VMA_VALIDATE(VMA_DEBUG_MARGIN == 0 || prevFree); | ||
| 8895 | } | ||
| 8896 | |||
| 8897 | ✗ | calculatedOffset += subAlloc.size; | |
| 8898 | ✗ | prevFree = currFree; | |
| 8899 | } | ||
| 8900 | |||
| 8901 | // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't | ||
| 8902 | // match expected one. | ||
| 8903 | ✗ | VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister); | |
| 8904 | |||
| 8905 | ✗ | VkDeviceSize lastSize = 0; | |
| 8906 | ✗ | for (size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i) | |
| 8907 | { | ||
| 8908 | ✗ | VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i]; | |
| 8909 | |||
| 8910 | // Only free suballocations can be registered in m_FreeSuballocationsBySize. | ||
| 8911 | ✗ | VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 8912 | // They must be sorted by size ascending. | ||
| 8913 | ✗ | VMA_VALIDATE(suballocItem->size >= lastSize); | |
| 8914 | |||
| 8915 | ✗ | lastSize = suballocItem->size; | |
| 8916 | } | ||
| 8917 | |||
| 8918 | // Check if totals match calculacted values. | ||
| 8919 | ✗ | VMA_VALIDATE(ValidateFreeSuballocationList()); | |
| 8920 | ✗ | VMA_VALIDATE(calculatedOffset == GetSize()); | |
| 8921 | ✗ | VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize); | |
| 8922 | ✗ | VMA_VALIDATE(calculatedFreeCount == m_FreeCount); | |
| 8923 | |||
| 8924 | ✗ | return true; | |
| 8925 | } | ||
| 8926 | |||
| 8927 | VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const | ||
| 8928 | { | ||
| 8929 | ✗ | if (!m_FreeSuballocationsBySize.empty()) | |
| 8930 | { | ||
| 8931 | ✗ | return m_FreeSuballocationsBySize.back()->size; | |
| 8932 | } | ||
| 8933 | else | ||
| 8934 | { | ||
| 8935 | ✗ | return 0; | |
| 8936 | } | ||
| 8937 | } | ||
| 8938 | |||
| 8939 | bool VmaBlockMetadata_Generic::IsEmpty() const | ||
| 8940 | { | ||
| 8941 | ✗ | return (m_Suballocations.size() == 1) && (m_FreeCount == 1); | |
| 8942 | } | ||
| 8943 | |||
| 8944 | void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const | ||
| 8945 | { | ||
| 8946 | ✗ | outInfo.blockCount = 1; | |
| 8947 | |||
| 8948 | ✗ | const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); | |
| 8949 | ✗ | outInfo.allocationCount = rangeCount - m_FreeCount; | |
| 8950 | ✗ | outInfo.unusedRangeCount = m_FreeCount; | |
| 8951 | |||
| 8952 | ✗ | outInfo.unusedBytes = m_SumFreeSize; | |
| 8953 | ✗ | outInfo.usedBytes = GetSize() - outInfo.unusedBytes; | |
| 8954 | |||
| 8955 | ✗ | outInfo.allocationSizeMin = UINT64_MAX; | |
| 8956 | ✗ | outInfo.allocationSizeMax = 0; | |
| 8957 | ✗ | outInfo.unusedRangeSizeMin = UINT64_MAX; | |
| 8958 | ✗ | outInfo.unusedRangeSizeMax = 0; | |
| 8959 | |||
| 8960 | ✗ | for (VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); | |
| 8961 | ✗ | suballocItem != m_Suballocations.cend(); | |
| 8962 | ✗ | ++suballocItem) | |
| 8963 | { | ||
| 8964 | ✗ | const VmaSuballocation& suballoc = *suballocItem; | |
| 8965 | ✗ | if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) | |
| 8966 | { | ||
| 8967 | ✗ | outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); | |
| 8968 | ✗ | outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size); | |
| 8969 | } | ||
| 8970 | else | ||
| 8971 | { | ||
| 8972 | ✗ | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size); | |
| 8973 | ✗ | outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size); | |
| 8974 | } | ||
| 8975 | } | ||
| 8976 | ✗ | } | |
| 8977 | |||
| 8978 | void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const | ||
| 8979 | { | ||
| 8980 | ✗ | const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); | |
| 8981 | |||
| 8982 | ✗ | inoutStats.size += GetSize(); | |
| 8983 | ✗ | inoutStats.unusedSize += m_SumFreeSize; | |
| 8984 | ✗ | inoutStats.allocationCount += rangeCount - m_FreeCount; | |
| 8985 | ✗ | inoutStats.unusedRangeCount += m_FreeCount; | |
| 8986 | ✗ | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); | |
| 8987 | ✗ | } | |
| 8988 | |||
| 8989 | #if VMA_STATS_STRING_ENABLED | ||
| 8990 | |||
| 8991 | void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json) const | ||
| 8992 | { | ||
| 8993 | ✗ | PrintDetailedMap_Begin(json, | |
| 8994 | ✗ | m_SumFreeSize, // unusedBytes | |
| 8995 | ✗ | m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount | |
| 8996 | ✗ | m_FreeCount); // unusedRangeCount | |
| 8997 | |||
| 8998 | ✗ | size_t i = 0; | |
| 8999 | ✗ | for (VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin(); | |
| 9000 | ✗ | suballocItem != m_Suballocations.cend(); | |
| 9001 | ✗ | ++suballocItem, ++i) | |
| 9002 | { | ||
| 9003 | ✗ | if (suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) | |
| 9004 | { | ||
| 9005 | ✗ | PrintDetailedMap_UnusedRange(json, suballocItem->offset, suballocItem->size); | |
| 9006 | } | ||
| 9007 | else | ||
| 9008 | { | ||
| 9009 | ✗ | PrintDetailedMap_Allocation(json, suballocItem->offset, suballocItem->hAllocation); | |
| 9010 | } | ||
| 9011 | } | ||
| 9012 | |||
| 9013 | ✗ | PrintDetailedMap_End(json); | |
| 9014 | ✗ | } | |
| 9015 | |||
| 9016 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 9017 | |||
| 9018 | bool VmaBlockMetadata_Generic::CreateAllocationRequest( | ||
| 9019 | uint32_t currentFrameIndex, | ||
| 9020 | uint32_t frameInUseCount, | ||
| 9021 | VkDeviceSize bufferImageGranularity, | ||
| 9022 | VkDeviceSize allocSize, | ||
| 9023 | VkDeviceSize allocAlignment, | ||
| 9024 | bool upperAddress, | ||
| 9025 | VmaSuballocationType allocType, | ||
| 9026 | bool canMakeOtherLost, | ||
| 9027 | uint32_t strategy, | ||
| 9028 | VmaAllocationRequest* pAllocationRequest) | ||
| 9029 | { | ||
| 9030 | ✗ | VMA_ASSERT(allocSize > 0); | |
| 9031 | ✗ | VMA_ASSERT(!upperAddress); | |
| 9032 | ✗ | VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); | |
| 9033 | ✗ | VMA_ASSERT(pAllocationRequest != VMA_NULL); | |
| 9034 | VMA_HEAVY_ASSERT(Validate()); | ||
| 9035 | |||
| 9036 | ✗ | pAllocationRequest->type = VmaAllocationRequestType::Normal; | |
| 9037 | |||
| 9038 | // There is not enough total free space in this block to fullfill the request: Early return. | ||
| 9039 | ✗ | if (canMakeOtherLost == false && | |
| 9040 | ✗ | m_SumFreeSize < allocSize + 2 * VMA_DEBUG_MARGIN) | |
| 9041 | { | ||
| 9042 | ✗ | return false; | |
| 9043 | } | ||
| 9044 | |||
| 9045 | // New algorithm, efficiently searching freeSuballocationsBySize. | ||
| 9046 | ✗ | const size_t freeSuballocCount = m_FreeSuballocationsBySize.size(); | |
| 9047 | ✗ | if (freeSuballocCount > 0) | |
| 9048 | { | ||
| 9049 | ✗ | if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) | |
| 9050 | { | ||
| 9051 | // Find first free suballocation with size not less than allocSize + 2 * VMA_DEBUG_MARGIN. | ||
| 9052 | ✗ | VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( | |
| 9053 | m_FreeSuballocationsBySize.data(), | ||
| 9054 | ✗ | m_FreeSuballocationsBySize.data() + freeSuballocCount, | |
| 9055 | ✗ | allocSize + 2 * VMA_DEBUG_MARGIN, | |
| 9056 | ✗ | VmaSuballocationItemSizeLess()); | |
| 9057 | ✗ | size_t index = it - m_FreeSuballocationsBySize.data(); | |
| 9058 | ✗ | for (; index < freeSuballocCount; ++index) | |
| 9059 | { | ||
| 9060 | ✗ | if (CheckAllocation( | |
| 9061 | currentFrameIndex, | ||
| 9062 | frameInUseCount, | ||
| 9063 | bufferImageGranularity, | ||
| 9064 | allocSize, | ||
| 9065 | allocAlignment, | ||
| 9066 | allocType, | ||
| 9067 | ✗ | m_FreeSuballocationsBySize[index], | |
| 9068 | false, // canMakeOtherLost | ||
| 9069 | &pAllocationRequest->offset, | ||
| 9070 | &pAllocationRequest->itemsToMakeLostCount, | ||
| 9071 | &pAllocationRequest->sumFreeSize, | ||
| 9072 | &pAllocationRequest->sumItemSize)) | ||
| 9073 | { | ||
| 9074 | ✗ | pAllocationRequest->item = m_FreeSuballocationsBySize[index]; | |
| 9075 | ✗ | return true; | |
| 9076 | } | ||
| 9077 | } | ||
| 9078 | } | ||
| 9079 | ✗ | else if (strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET) | |
| 9080 | { | ||
| 9081 | ✗ | for (VmaSuballocationList::iterator it = m_Suballocations.begin(); | |
| 9082 | ✗ | it != m_Suballocations.end(); | |
| 9083 | ✗ | ++it) | |
| 9084 | { | ||
| 9085 | ✗ | if (it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation( | |
| 9086 | currentFrameIndex, | ||
| 9087 | frameInUseCount, | ||
| 9088 | bufferImageGranularity, | ||
| 9089 | allocSize, | ||
| 9090 | allocAlignment, | ||
| 9091 | allocType, | ||
| 9092 | it, | ||
| 9093 | false, // canMakeOtherLost | ||
| 9094 | &pAllocationRequest->offset, | ||
| 9095 | &pAllocationRequest->itemsToMakeLostCount, | ||
| 9096 | &pAllocationRequest->sumFreeSize, | ||
| 9097 | &pAllocationRequest->sumItemSize)) | ||
| 9098 | { | ||
| 9099 | ✗ | pAllocationRequest->item = it; | |
| 9100 | ✗ | return true; | |
| 9101 | } | ||
| 9102 | } | ||
| 9103 | } | ||
| 9104 | else // WORST_FIT, FIRST_FIT | ||
| 9105 | { | ||
| 9106 | // Search staring from biggest suballocations. | ||
| 9107 | ✗ | for (size_t index = freeSuballocCount; index--; ) | |
| 9108 | { | ||
| 9109 | ✗ | if (CheckAllocation( | |
| 9110 | currentFrameIndex, | ||
| 9111 | frameInUseCount, | ||
| 9112 | bufferImageGranularity, | ||
| 9113 | allocSize, | ||
| 9114 | allocAlignment, | ||
| 9115 | allocType, | ||
| 9116 | ✗ | m_FreeSuballocationsBySize[index], | |
| 9117 | false, // canMakeOtherLost | ||
| 9118 | &pAllocationRequest->offset, | ||
| 9119 | &pAllocationRequest->itemsToMakeLostCount, | ||
| 9120 | &pAllocationRequest->sumFreeSize, | ||
| 9121 | &pAllocationRequest->sumItemSize)) | ||
| 9122 | { | ||
| 9123 | ✗ | pAllocationRequest->item = m_FreeSuballocationsBySize[index]; | |
| 9124 | ✗ | return true; | |
| 9125 | } | ||
| 9126 | } | ||
| 9127 | } | ||
| 9128 | } | ||
| 9129 | |||
| 9130 | ✗ | if (canMakeOtherLost) | |
| 9131 | { | ||
| 9132 | // Brute-force algorithm. TODO: Come up with something better. | ||
| 9133 | |||
| 9134 | ✗ | bool found = false; | |
| 9135 | ✗ | VmaAllocationRequest tmpAllocRequest = {}; | |
| 9136 | ✗ | tmpAllocRequest.type = VmaAllocationRequestType::Normal; | |
| 9137 | ✗ | for (VmaSuballocationList::iterator suballocIt = m_Suballocations.begin(); | |
| 9138 | ✗ | suballocIt != m_Suballocations.end(); | |
| 9139 | ✗ | ++suballocIt) | |
| 9140 | { | ||
| 9141 | ✗ | if (suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE || | |
| 9142 | ✗ | suballocIt->hAllocation->CanBecomeLost()) | |
| 9143 | { | ||
| 9144 | ✗ | if (CheckAllocation( | |
| 9145 | currentFrameIndex, | ||
| 9146 | frameInUseCount, | ||
| 9147 | bufferImageGranularity, | ||
| 9148 | allocSize, | ||
| 9149 | allocAlignment, | ||
| 9150 | allocType, | ||
| 9151 | suballocIt, | ||
| 9152 | canMakeOtherLost, | ||
| 9153 | &tmpAllocRequest.offset, | ||
| 9154 | &tmpAllocRequest.itemsToMakeLostCount, | ||
| 9155 | &tmpAllocRequest.sumFreeSize, | ||
| 9156 | &tmpAllocRequest.sumItemSize)) | ||
| 9157 | { | ||
| 9158 | ✗ | if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) | |
| 9159 | { | ||
| 9160 | ✗ | *pAllocationRequest = tmpAllocRequest; | |
| 9161 | ✗ | pAllocationRequest->item = suballocIt; | |
| 9162 | ✗ | break; | |
| 9163 | } | ||
| 9164 | ✗ | if (!found || tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost()) | |
| 9165 | { | ||
| 9166 | ✗ | *pAllocationRequest = tmpAllocRequest; | |
| 9167 | ✗ | pAllocationRequest->item = suballocIt; | |
| 9168 | ✗ | found = true; | |
| 9169 | } | ||
| 9170 | } | ||
| 9171 | } | ||
| 9172 | } | ||
| 9173 | |||
| 9174 | ✗ | return found; | |
| 9175 | } | ||
| 9176 | |||
| 9177 | ✗ | return false; | |
| 9178 | } | ||
| 9179 | |||
| 9180 | bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost( | ||
| 9181 | uint32_t currentFrameIndex, | ||
| 9182 | uint32_t frameInUseCount, | ||
| 9183 | VmaAllocationRequest* pAllocationRequest) | ||
| 9184 | { | ||
| 9185 | ✗ | VMA_ASSERT(pAllocationRequest && pAllocationRequest->type == VmaAllocationRequestType::Normal); | |
| 9186 | |||
| 9187 | ✗ | while (pAllocationRequest->itemsToMakeLostCount > 0) | |
| 9188 | { | ||
| 9189 | ✗ | if (pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE) | |
| 9190 | { | ||
| 9191 | ✗ | ++pAllocationRequest->item; | |
| 9192 | } | ||
| 9193 | ✗ | VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); | |
| 9194 | ✗ | VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE); | |
| 9195 | ✗ | VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost()); | |
| 9196 | ✗ | if (pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) | |
| 9197 | { | ||
| 9198 | ✗ | pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item); | |
| 9199 | ✗ | --pAllocationRequest->itemsToMakeLostCount; | |
| 9200 | } | ||
| 9201 | else | ||
| 9202 | { | ||
| 9203 | ✗ | return false; | |
| 9204 | } | ||
| 9205 | } | ||
| 9206 | |||
| 9207 | VMA_HEAVY_ASSERT(Validate()); | ||
| 9208 | ✗ | VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); | |
| 9209 | ✗ | VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 9210 | |||
| 9211 | ✗ | return true; | |
| 9212 | } | ||
| 9213 | |||
| 9214 | uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) | ||
| 9215 | { | ||
| 9216 | ✗ | uint32_t lostAllocationCount = 0; | |
| 9217 | ✗ | for (VmaSuballocationList::iterator it = m_Suballocations.begin(); | |
| 9218 | ✗ | it != m_Suballocations.end(); | |
| 9219 | ✗ | ++it) | |
| 9220 | { | ||
| 9221 | ✗ | if (it->type != VMA_SUBALLOCATION_TYPE_FREE && | |
| 9222 | ✗ | it->hAllocation->CanBecomeLost() && | |
| 9223 | ✗ | it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) | |
| 9224 | { | ||
| 9225 | ✗ | it = FreeSuballocation(it); | |
| 9226 | ✗ | ++lostAllocationCount; | |
| 9227 | } | ||
| 9228 | } | ||
| 9229 | ✗ | return lostAllocationCount; | |
| 9230 | } | ||
| 9231 | |||
| 9232 | VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData) | ||
| 9233 | { | ||
| 9234 | ✗ | for (VmaSuballocationList::iterator it = m_Suballocations.begin(); | |
| 9235 | ✗ | it != m_Suballocations.end(); | |
| 9236 | ✗ | ++it) | |
| 9237 | { | ||
| 9238 | ✗ | if (it->type != VMA_SUBALLOCATION_TYPE_FREE) | |
| 9239 | { | ||
| 9240 | ✗ | if (!VmaValidateMagicValue(pBlockData, it->offset - VMA_DEBUG_MARGIN)) | |
| 9241 | { | ||
| 9242 | ✗ | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); | |
| 9243 | return VK_ERROR_VALIDATION_FAILED_EXT; | ||
| 9244 | } | ||
| 9245 | ✗ | if (!VmaValidateMagicValue(pBlockData, it->offset + it->size)) | |
| 9246 | { | ||
| 9247 | ✗ | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); | |
| 9248 | return VK_ERROR_VALIDATION_FAILED_EXT; | ||
| 9249 | } | ||
| 9250 | } | ||
| 9251 | } | ||
| 9252 | |||
| 9253 | ✗ | return VK_SUCCESS; | |
| 9254 | } | ||
| 9255 | |||
| 9256 | void VmaBlockMetadata_Generic::Alloc( | ||
| 9257 | const VmaAllocationRequest& request, | ||
| 9258 | VmaSuballocationType type, | ||
| 9259 | VkDeviceSize allocSize, | ||
| 9260 | VmaAllocation hAllocation) | ||
| 9261 | { | ||
| 9262 | ✗ | VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); | |
| 9263 | ✗ | VMA_ASSERT(request.item != m_Suballocations.end()); | |
| 9264 | ✗ | VmaSuballocation& suballoc = *request.item; | |
| 9265 | // Given suballocation is a free block. | ||
| 9266 | ✗ | VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 9267 | // Given offset is inside this suballocation. | ||
| 9268 | ✗ | VMA_ASSERT(request.offset >= suballoc.offset); | |
| 9269 | ✗ | const VkDeviceSize paddingBegin = request.offset - suballoc.offset; | |
| 9270 | ✗ | VMA_ASSERT(suballoc.size >= paddingBegin + allocSize); | |
| 9271 | ✗ | const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize; | |
| 9272 | |||
| 9273 | // Unregister this free suballocation from m_FreeSuballocationsBySize and update | ||
| 9274 | // it to become used. | ||
| 9275 | ✗ | UnregisterFreeSuballocation(request.item); | |
| 9276 | |||
| 9277 | ✗ | suballoc.offset = request.offset; | |
| 9278 | ✗ | suballoc.size = allocSize; | |
| 9279 | ✗ | suballoc.type = type; | |
| 9280 | ✗ | suballoc.hAllocation = hAllocation; | |
| 9281 | |||
| 9282 | // If there are any free bytes remaining at the end, insert new free suballocation after current one. | ||
| 9283 | ✗ | if (paddingEnd) | |
| 9284 | { | ||
| 9285 | ✗ | VmaSuballocation paddingSuballoc = {}; | |
| 9286 | ✗ | paddingSuballoc.offset = request.offset + allocSize; | |
| 9287 | ✗ | paddingSuballoc.size = paddingEnd; | |
| 9288 | ✗ | paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; | |
| 9289 | ✗ | VmaSuballocationList::iterator next = request.item; | |
| 9290 | ✗ | ++next; | |
| 9291 | const VmaSuballocationList::iterator paddingEndItem = | ||
| 9292 | ✗ | m_Suballocations.insert(next, paddingSuballoc); | |
| 9293 | ✗ | RegisterFreeSuballocation(paddingEndItem); | |
| 9294 | } | ||
| 9295 | |||
| 9296 | // If there are any free bytes remaining at the beginning, insert new free suballocation before current one. | ||
| 9297 | ✗ | if (paddingBegin) | |
| 9298 | { | ||
| 9299 | ✗ | VmaSuballocation paddingSuballoc = {}; | |
| 9300 | ✗ | paddingSuballoc.offset = request.offset - paddingBegin; | |
| 9301 | ✗ | paddingSuballoc.size = paddingBegin; | |
| 9302 | ✗ | paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; | |
| 9303 | const VmaSuballocationList::iterator paddingBeginItem = | ||
| 9304 | ✗ | m_Suballocations.insert(request.item, paddingSuballoc); | |
| 9305 | ✗ | RegisterFreeSuballocation(paddingBeginItem); | |
| 9306 | } | ||
| 9307 | |||
| 9308 | // Update totals. | ||
| 9309 | ✗ | m_FreeCount = m_FreeCount - 1; | |
| 9310 | ✗ | if (paddingBegin > 0) | |
| 9311 | { | ||
| 9312 | ✗ | ++m_FreeCount; | |
| 9313 | } | ||
| 9314 | ✗ | if (paddingEnd > 0) | |
| 9315 | { | ||
| 9316 | ✗ | ++m_FreeCount; | |
| 9317 | } | ||
| 9318 | ✗ | m_SumFreeSize -= allocSize; | |
| 9319 | ✗ | } | |
| 9320 | |||
| 9321 | void VmaBlockMetadata_Generic::Free(const VmaAllocation allocation) | ||
| 9322 | { | ||
| 9323 | ✗ | for (VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); | |
| 9324 | ✗ | suballocItem != m_Suballocations.end(); | |
| 9325 | ✗ | ++suballocItem) | |
| 9326 | { | ||
| 9327 | ✗ | VmaSuballocation& suballoc = *suballocItem; | |
| 9328 | ✗ | if (suballoc.hAllocation == allocation) | |
| 9329 | { | ||
| 9330 | ✗ | FreeSuballocation(suballocItem); | |
| 9331 | VMA_HEAVY_ASSERT(Validate()); | ||
| 9332 | ✗ | return; | |
| 9333 | } | ||
| 9334 | } | ||
| 9335 | ✗ | VMA_ASSERT(0 && "Not found!"); | |
| 9336 | } | ||
| 9337 | |||
| 9338 | void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset) | ||
| 9339 | { | ||
| 9340 | ✗ | for (VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); | |
| 9341 | ✗ | suballocItem != m_Suballocations.end(); | |
| 9342 | ✗ | ++suballocItem) | |
| 9343 | { | ||
| 9344 | ✗ | VmaSuballocation& suballoc = *suballocItem; | |
| 9345 | ✗ | if (suballoc.offset == offset) | |
| 9346 | { | ||
| 9347 | ✗ | FreeSuballocation(suballocItem); | |
| 9348 | ✗ | return; | |
| 9349 | } | ||
| 9350 | } | ||
| 9351 | ✗ | VMA_ASSERT(0 && "Not found!"); | |
| 9352 | } | ||
| 9353 | |||
| 9354 | bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const | ||
| 9355 | { | ||
| 9356 | ✗ | VkDeviceSize lastSize = 0; | |
| 9357 | ✗ | for (size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i) | |
| 9358 | { | ||
| 9359 | ✗ | const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i]; | |
| 9360 | |||
| 9361 | ✗ | VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 9362 | ✗ | VMA_VALIDATE(it->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); | |
| 9363 | ✗ | VMA_VALIDATE(it->size >= lastSize); | |
| 9364 | ✗ | lastSize = it->size; | |
| 9365 | } | ||
| 9366 | ✗ | return true; | |
| 9367 | } | ||
| 9368 | |||
| 9369 | bool VmaBlockMetadata_Generic::CheckAllocation( | ||
| 9370 | uint32_t currentFrameIndex, | ||
| 9371 | uint32_t frameInUseCount, | ||
| 9372 | VkDeviceSize bufferImageGranularity, | ||
| 9373 | VkDeviceSize allocSize, | ||
| 9374 | VkDeviceSize allocAlignment, | ||
| 9375 | VmaSuballocationType allocType, | ||
| 9376 | VmaSuballocationList::const_iterator suballocItem, | ||
| 9377 | bool canMakeOtherLost, | ||
| 9378 | VkDeviceSize* pOffset, | ||
| 9379 | size_t* itemsToMakeLostCount, | ||
| 9380 | VkDeviceSize* pSumFreeSize, | ||
| 9381 | VkDeviceSize* pSumItemSize) const | ||
| 9382 | { | ||
| 9383 | ✗ | VMA_ASSERT(allocSize > 0); | |
| 9384 | ✗ | VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); | |
| 9385 | ✗ | VMA_ASSERT(suballocItem != m_Suballocations.cend()); | |
| 9386 | ✗ | VMA_ASSERT(pOffset != VMA_NULL); | |
| 9387 | |||
| 9388 | ✗ | *itemsToMakeLostCount = 0; | |
| 9389 | ✗ | *pSumFreeSize = 0; | |
| 9390 | ✗ | *pSumItemSize = 0; | |
| 9391 | |||
| 9392 | ✗ | if (canMakeOtherLost) | |
| 9393 | { | ||
| 9394 | ✗ | if (suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) | |
| 9395 | { | ||
| 9396 | ✗ | *pSumFreeSize = suballocItem->size; | |
| 9397 | } | ||
| 9398 | else | ||
| 9399 | { | ||
| 9400 | ✗ | if (suballocItem->hAllocation->CanBecomeLost() && | |
| 9401 | ✗ | suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) | |
| 9402 | { | ||
| 9403 | ✗ | ++* itemsToMakeLostCount; | |
| 9404 | ✗ | *pSumItemSize = suballocItem->size; | |
| 9405 | } | ||
| 9406 | else | ||
| 9407 | { | ||
| 9408 | ✗ | return false; | |
| 9409 | } | ||
| 9410 | } | ||
| 9411 | |||
| 9412 | // Remaining size is too small for this request: Early return. | ||
| 9413 | ✗ | if (GetSize() - suballocItem->offset < allocSize) | |
| 9414 | { | ||
| 9415 | ✗ | return false; | |
| 9416 | } | ||
| 9417 | |||
| 9418 | // Start from offset equal to beginning of this suballocation. | ||
| 9419 | ✗ | *pOffset = suballocItem->offset; | |
| 9420 | |||
| 9421 | // Apply VMA_DEBUG_MARGIN at the beginning. | ||
| 9422 | if (VMA_DEBUG_MARGIN > 0) | ||
| 9423 | { | ||
| 9424 | *pOffset += VMA_DEBUG_MARGIN; | ||
| 9425 | } | ||
| 9426 | |||
| 9427 | // Apply alignment. | ||
| 9428 | ✗ | *pOffset = VmaAlignUp(*pOffset, allocAlignment); | |
| 9429 | |||
| 9430 | // Check previous suballocations for BufferImageGranularity conflicts. | ||
| 9431 | // Make bigger alignment if necessary. | ||
| 9432 | ✗ | if (bufferImageGranularity > 1) | |
| 9433 | { | ||
| 9434 | ✗ | bool bufferImageGranularityConflict = false; | |
| 9435 | ✗ | VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; | |
| 9436 | ✗ | while (prevSuballocItem != m_Suballocations.cbegin()) | |
| 9437 | { | ||
| 9438 | ✗ | --prevSuballocItem; | |
| 9439 | ✗ | const VmaSuballocation& prevSuballoc = *prevSuballocItem; | |
| 9440 | ✗ | if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) | |
| 9441 | { | ||
| 9442 | ✗ | if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) | |
| 9443 | { | ||
| 9444 | ✗ | bufferImageGranularityConflict = true; | |
| 9445 | ✗ | break; | |
| 9446 | } | ||
| 9447 | } | ||
| 9448 | else | ||
| 9449 | // Already on previous page. | ||
| 9450 | ✗ | break; | |
| 9451 | } | ||
| 9452 | ✗ | if (bufferImageGranularityConflict) | |
| 9453 | { | ||
| 9454 | ✗ | *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); | |
| 9455 | } | ||
| 9456 | } | ||
| 9457 | |||
| 9458 | // Now that we have final *pOffset, check if we are past suballocItem. | ||
| 9459 | // If yes, return false - this function should be called for another suballocItem as starting point. | ||
| 9460 | ✗ | if (*pOffset >= suballocItem->offset + suballocItem->size) | |
| 9461 | { | ||
| 9462 | ✗ | return false; | |
| 9463 | } | ||
| 9464 | |||
| 9465 | // Calculate padding at the beginning based on current offset. | ||
| 9466 | ✗ | const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset; | |
| 9467 | |||
| 9468 | // Calculate required margin at the end. | ||
| 9469 | ✗ | const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; | |
| 9470 | |||
| 9471 | ✗ | const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin; | |
| 9472 | // Another early return check. | ||
| 9473 | ✗ | if (suballocItem->offset + totalSize > GetSize()) | |
| 9474 | { | ||
| 9475 | ✗ | return false; | |
| 9476 | } | ||
| 9477 | |||
| 9478 | // Advance lastSuballocItem until desired size is reached. | ||
| 9479 | // Update itemsToMakeLostCount. | ||
| 9480 | ✗ | VmaSuballocationList::const_iterator lastSuballocItem = suballocItem; | |
| 9481 | ✗ | if (totalSize > suballocItem->size) | |
| 9482 | { | ||
| 9483 | ✗ | VkDeviceSize remainingSize = totalSize - suballocItem->size; | |
| 9484 | ✗ | while (remainingSize > 0) | |
| 9485 | { | ||
| 9486 | ✗ | ++lastSuballocItem; | |
| 9487 | ✗ | if (lastSuballocItem == m_Suballocations.cend()) | |
| 9488 | { | ||
| 9489 | ✗ | return false; | |
| 9490 | } | ||
| 9491 | ✗ | if (lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) | |
| 9492 | { | ||
| 9493 | ✗ | *pSumFreeSize += lastSuballocItem->size; | |
| 9494 | } | ||
| 9495 | else | ||
| 9496 | { | ||
| 9497 | ✗ | VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE); | |
| 9498 | ✗ | if (lastSuballocItem->hAllocation->CanBecomeLost() && | |
| 9499 | ✗ | lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) | |
| 9500 | { | ||
| 9501 | ✗ | ++* itemsToMakeLostCount; | |
| 9502 | ✗ | *pSumItemSize += lastSuballocItem->size; | |
| 9503 | } | ||
| 9504 | else | ||
| 9505 | { | ||
| 9506 | ✗ | return false; | |
| 9507 | } | ||
| 9508 | } | ||
| 9509 | ✗ | remainingSize = (lastSuballocItem->size < remainingSize) ? | |
| 9510 | ✗ | remainingSize - lastSuballocItem->size : 0; | |
| 9511 | } | ||
| 9512 | } | ||
| 9513 | |||
| 9514 | // Check next suballocations for BufferImageGranularity conflicts. | ||
| 9515 | // If conflict exists, we must mark more allocations lost or fail. | ||
| 9516 | ✗ | if (bufferImageGranularity > 1) | |
| 9517 | { | ||
| 9518 | ✗ | VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem; | |
| 9519 | ✗ | ++nextSuballocItem; | |
| 9520 | ✗ | while (nextSuballocItem != m_Suballocations.cend()) | |
| 9521 | { | ||
| 9522 | ✗ | const VmaSuballocation& nextSuballoc = *nextSuballocItem; | |
| 9523 | ✗ | if (VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) | |
| 9524 | { | ||
| 9525 | ✗ | if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) | |
| 9526 | { | ||
| 9527 | ✗ | VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE); | |
| 9528 | ✗ | if (nextSuballoc.hAllocation->CanBecomeLost() && | |
| 9529 | ✗ | nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) | |
| 9530 | { | ||
| 9531 | ✗ | ++* itemsToMakeLostCount; | |
| 9532 | } | ||
| 9533 | else | ||
| 9534 | { | ||
| 9535 | ✗ | return false; | |
| 9536 | } | ||
| 9537 | } | ||
| 9538 | } | ||
| 9539 | else | ||
| 9540 | { | ||
| 9541 | // Already on next page. | ||
| 9542 | ✗ | break; | |
| 9543 | } | ||
| 9544 | ✗ | ++nextSuballocItem; | |
| 9545 | } | ||
| 9546 | } | ||
| 9547 | } | ||
| 9548 | else | ||
| 9549 | { | ||
| 9550 | ✗ | const VmaSuballocation& suballoc = *suballocItem; | |
| 9551 | ✗ | VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 9552 | |||
| 9553 | ✗ | *pSumFreeSize = suballoc.size; | |
| 9554 | |||
| 9555 | // Size of this suballocation is too small for this request: Early return. | ||
| 9556 | ✗ | if (suballoc.size < allocSize) | |
| 9557 | { | ||
| 9558 | ✗ | return false; | |
| 9559 | } | ||
| 9560 | |||
| 9561 | // Start from offset equal to beginning of this suballocation. | ||
| 9562 | ✗ | *pOffset = suballoc.offset; | |
| 9563 | |||
| 9564 | // Apply VMA_DEBUG_MARGIN at the beginning. | ||
| 9565 | if (VMA_DEBUG_MARGIN > 0) | ||
| 9566 | { | ||
| 9567 | *pOffset += VMA_DEBUG_MARGIN; | ||
| 9568 | } | ||
| 9569 | |||
| 9570 | // Apply alignment. | ||
| 9571 | ✗ | *pOffset = VmaAlignUp(*pOffset, allocAlignment); | |
| 9572 | |||
| 9573 | // Check previous suballocations for BufferImageGranularity conflicts. | ||
| 9574 | // Make bigger alignment if necessary. | ||
| 9575 | ✗ | if (bufferImageGranularity > 1) | |
| 9576 | { | ||
| 9577 | ✗ | bool bufferImageGranularityConflict = false; | |
| 9578 | ✗ | VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; | |
| 9579 | ✗ | while (prevSuballocItem != m_Suballocations.cbegin()) | |
| 9580 | { | ||
| 9581 | ✗ | --prevSuballocItem; | |
| 9582 | ✗ | const VmaSuballocation& prevSuballoc = *prevSuballocItem; | |
| 9583 | ✗ | if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) | |
| 9584 | { | ||
| 9585 | ✗ | if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) | |
| 9586 | { | ||
| 9587 | ✗ | bufferImageGranularityConflict = true; | |
| 9588 | ✗ | break; | |
| 9589 | } | ||
| 9590 | } | ||
| 9591 | else | ||
| 9592 | // Already on previous page. | ||
| 9593 | ✗ | break; | |
| 9594 | } | ||
| 9595 | ✗ | if (bufferImageGranularityConflict) | |
| 9596 | { | ||
| 9597 | ✗ | *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); | |
| 9598 | } | ||
| 9599 | } | ||
| 9600 | |||
| 9601 | // Calculate padding at the beginning based on current offset. | ||
| 9602 | ✗ | const VkDeviceSize paddingBegin = *pOffset - suballoc.offset; | |
| 9603 | |||
| 9604 | // Calculate required margin at the end. | ||
| 9605 | ✗ | const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; | |
| 9606 | |||
| 9607 | // Fail if requested size plus margin before and after is bigger than size of this suballocation. | ||
| 9608 | ✗ | if (paddingBegin + allocSize + requiredEndMargin > suballoc.size) | |
| 9609 | { | ||
| 9610 | ✗ | return false; | |
| 9611 | } | ||
| 9612 | |||
| 9613 | // Check next suballocations for BufferImageGranularity conflicts. | ||
| 9614 | // If conflict exists, allocation cannot be made here. | ||
| 9615 | ✗ | if (bufferImageGranularity > 1) | |
| 9616 | { | ||
| 9617 | ✗ | VmaSuballocationList::const_iterator nextSuballocItem = suballocItem; | |
| 9618 | ✗ | ++nextSuballocItem; | |
| 9619 | ✗ | while (nextSuballocItem != m_Suballocations.cend()) | |
| 9620 | { | ||
| 9621 | ✗ | const VmaSuballocation& nextSuballoc = *nextSuballocItem; | |
| 9622 | ✗ | if (VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) | |
| 9623 | { | ||
| 9624 | ✗ | if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) | |
| 9625 | { | ||
| 9626 | ✗ | return false; | |
| 9627 | } | ||
| 9628 | } | ||
| 9629 | else | ||
| 9630 | { | ||
| 9631 | // Already on next page. | ||
| 9632 | ✗ | break; | |
| 9633 | } | ||
| 9634 | ✗ | ++nextSuballocItem; | |
| 9635 | } | ||
| 9636 | } | ||
| 9637 | } | ||
| 9638 | |||
| 9639 | // All tests passed: Success. pOffset is already filled. | ||
| 9640 | ✗ | return true; | |
| 9641 | } | ||
| 9642 | |||
| 9643 | void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item) | ||
| 9644 | { | ||
| 9645 | ✗ | VMA_ASSERT(item != m_Suballocations.end()); | |
| 9646 | ✗ | VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 9647 | |||
| 9648 | ✗ | VmaSuballocationList::iterator nextItem = item; | |
| 9649 | ✗ | ++nextItem; | |
| 9650 | ✗ | VMA_ASSERT(nextItem != m_Suballocations.end()); | |
| 9651 | ✗ | VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 9652 | |||
| 9653 | ✗ | item->size += nextItem->size; | |
| 9654 | ✗ | --m_FreeCount; | |
| 9655 | ✗ | m_Suballocations.erase(nextItem); | |
| 9656 | ✗ | } | |
| 9657 | |||
| 9658 | VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem) | ||
| 9659 | { | ||
| 9660 | // Change this suballocation to be marked as free. | ||
| 9661 | ✗ | VmaSuballocation& suballoc = *suballocItem; | |
| 9662 | ✗ | suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; | |
| 9663 | ✗ | suballoc.hAllocation = VK_NULL_HANDLE; | |
| 9664 | |||
| 9665 | // Update totals. | ||
| 9666 | ✗ | ++m_FreeCount; | |
| 9667 | ✗ | m_SumFreeSize += suballoc.size; | |
| 9668 | |||
| 9669 | // Merge with previous and/or next suballocation if it's also free. | ||
| 9670 | ✗ | bool mergeWithNext = false; | |
| 9671 | ✗ | bool mergeWithPrev = false; | |
| 9672 | |||
| 9673 | ✗ | VmaSuballocationList::iterator nextItem = suballocItem; | |
| 9674 | ✗ | ++nextItem; | |
| 9675 | ✗ | if ((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE)) | |
| 9676 | { | ||
| 9677 | ✗ | mergeWithNext = true; | |
| 9678 | } | ||
| 9679 | |||
| 9680 | ✗ | VmaSuballocationList::iterator prevItem = suballocItem; | |
| 9681 | ✗ | if (suballocItem != m_Suballocations.begin()) | |
| 9682 | { | ||
| 9683 | ✗ | --prevItem; | |
| 9684 | ✗ | if (prevItem->type == VMA_SUBALLOCATION_TYPE_FREE) | |
| 9685 | { | ||
| 9686 | ✗ | mergeWithPrev = true; | |
| 9687 | } | ||
| 9688 | } | ||
| 9689 | |||
| 9690 | ✗ | if (mergeWithNext) | |
| 9691 | { | ||
| 9692 | ✗ | UnregisterFreeSuballocation(nextItem); | |
| 9693 | ✗ | MergeFreeWithNext(suballocItem); | |
| 9694 | } | ||
| 9695 | |||
| 9696 | ✗ | if (mergeWithPrev) | |
| 9697 | { | ||
| 9698 | ✗ | UnregisterFreeSuballocation(prevItem); | |
| 9699 | ✗ | MergeFreeWithNext(prevItem); | |
| 9700 | ✗ | RegisterFreeSuballocation(prevItem); | |
| 9701 | ✗ | return prevItem; | |
| 9702 | } | ||
| 9703 | else | ||
| 9704 | { | ||
| 9705 | ✗ | RegisterFreeSuballocation(suballocItem); | |
| 9706 | ✗ | return suballocItem; | |
| 9707 | } | ||
| 9708 | } | ||
| 9709 | |||
| 9710 | void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item) | ||
| 9711 | { | ||
| 9712 | ✗ | VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 9713 | ✗ | VMA_ASSERT(item->size > 0); | |
| 9714 | |||
| 9715 | // You may want to enable this validation at the beginning or at the end of | ||
| 9716 | // this function, depending on what do you want to check. | ||
| 9717 | VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); | ||
| 9718 | |||
| 9719 | ✗ | if (item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) | |
| 9720 | { | ||
| 9721 | ✗ | if (m_FreeSuballocationsBySize.empty()) | |
| 9722 | { | ||
| 9723 | ✗ | m_FreeSuballocationsBySize.push_back(item); | |
| 9724 | } | ||
| 9725 | else | ||
| 9726 | { | ||
| 9727 | ✗ | VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item); | |
| 9728 | } | ||
| 9729 | } | ||
| 9730 | |||
| 9731 | //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); | ||
| 9732 | ✗ | } | |
| 9733 | |||
| 9734 | |||
| 9735 | void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item) | ||
| 9736 | { | ||
| 9737 | ✗ | VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 9738 | ✗ | VMA_ASSERT(item->size > 0); | |
| 9739 | |||
| 9740 | // You may want to enable this validation at the beginning or at the end of | ||
| 9741 | // this function, depending on what do you want to check. | ||
| 9742 | VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); | ||
| 9743 | |||
| 9744 | ✗ | if (item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) | |
| 9745 | { | ||
| 9746 | ✗ | VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( | |
| 9747 | m_FreeSuballocationsBySize.data(), | ||
| 9748 | ✗ | m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(), | |
| 9749 | item, | ||
| 9750 | ✗ | VmaSuballocationItemSizeLess()); | |
| 9751 | ✗ | for (size_t index = it - m_FreeSuballocationsBySize.data(); | |
| 9752 | ✗ | index < m_FreeSuballocationsBySize.size(); | |
| 9753 | ++index) | ||
| 9754 | { | ||
| 9755 | ✗ | if (m_FreeSuballocationsBySize[index] == item) | |
| 9756 | { | ||
| 9757 | ✗ | VmaVectorRemove(m_FreeSuballocationsBySize, index); | |
| 9758 | ✗ | return; | |
| 9759 | } | ||
| 9760 | ✗ | VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found."); | |
| 9761 | } | ||
| 9762 | ✗ | VMA_ASSERT(0 && "Not found."); | |
| 9763 | } | ||
| 9764 | |||
| 9765 | //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); | ||
| 9766 | } | ||
| 9767 | |||
| 9768 | bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible( | ||
| 9769 | VkDeviceSize bufferImageGranularity, | ||
| 9770 | VmaSuballocationType& inOutPrevSuballocType) const | ||
| 9771 | { | ||
| 9772 | ✗ | if (bufferImageGranularity == 1 || IsEmpty()) | |
| 9773 | { | ||
| 9774 | ✗ | return false; | |
| 9775 | } | ||
| 9776 | |||
| 9777 | ✗ | VkDeviceSize minAlignment = VK_WHOLE_SIZE; | |
| 9778 | ✗ | bool typeConflictFound = false; | |
| 9779 | ✗ | for (VmaSuballocationList::const_iterator it = m_Suballocations.cbegin(); | |
| 9780 | ✗ | it != m_Suballocations.cend(); | |
| 9781 | ✗ | ++it) | |
| 9782 | { | ||
| 9783 | ✗ | const VmaSuballocationType suballocType = it->type; | |
| 9784 | ✗ | if (suballocType != VMA_SUBALLOCATION_TYPE_FREE) | |
| 9785 | { | ||
| 9786 | ✗ | minAlignment = VMA_MIN(minAlignment, it->hAllocation->GetAlignment()); | |
| 9787 | ✗ | if (VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType)) | |
| 9788 | { | ||
| 9789 | ✗ | typeConflictFound = true; | |
| 9790 | } | ||
| 9791 | ✗ | inOutPrevSuballocType = suballocType; | |
| 9792 | } | ||
| 9793 | } | ||
| 9794 | |||
| 9795 | ✗ | return typeConflictFound || minAlignment >= bufferImageGranularity; | |
| 9796 | } | ||
| 9797 | |||
| 9798 | //////////////////////////////////////////////////////////////////////////////// | ||
| 9799 | // class VmaBlockMetadata_Linear | ||
| 9800 | |||
| 9801 | VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(VmaAllocator hAllocator) : | ||
| 9802 | VmaBlockMetadata(hAllocator), | ||
| 9803 | ✗ | m_SumFreeSize(0), | |
| 9804 | ✗ | m_Suballocations0(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())), | |
| 9805 | ✗ | m_Suballocations1(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())), | |
| 9806 | ✗ | m_1stVectorIndex(0), | |
| 9807 | ✗ | m_2ndVectorMode(SECOND_VECTOR_EMPTY), | |
| 9808 | ✗ | m_1stNullItemsBeginCount(0), | |
| 9809 | ✗ | m_1stNullItemsMiddleCount(0), | |
| 9810 | ✗ | m_2ndNullItemsCount(0) | |
| 9811 | { | ||
| 9812 | ✗ | } | |
| 9813 | |||
| 9814 | VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear() | ||
| 9815 | { | ||
| 9816 | ✗ | } | |
| 9817 | |||
| 9818 | void VmaBlockMetadata_Linear::Init(VkDeviceSize size) | ||
| 9819 | { | ||
| 9820 | ✗ | VmaBlockMetadata::Init(size); | |
| 9821 | ✗ | m_SumFreeSize = size; | |
| 9822 | ✗ | } | |
| 9823 | |||
| 9824 | bool VmaBlockMetadata_Linear::Validate() const | ||
| 9825 | { | ||
| 9826 | ✗ | const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 9827 | ✗ | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 9828 | |||
| 9829 | ✗ | VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY)); | |
| 9830 | ✗ | VMA_VALIDATE(!suballocations1st.empty() || | |
| 9831 | suballocations2nd.empty() || | ||
| 9832 | m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER); | ||
| 9833 | |||
| 9834 | ✗ | if (!suballocations1st.empty()) | |
| 9835 | { | ||
| 9836 | // Null item at the beginning should be accounted into m_1stNullItemsBeginCount. | ||
| 9837 | ✗ | VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].hAllocation != VK_NULL_HANDLE); | |
| 9838 | // Null item at the end should be just pop_back(). | ||
| 9839 | ✗ | VMA_VALIDATE(suballocations1st.back().hAllocation != VK_NULL_HANDLE); | |
| 9840 | } | ||
| 9841 | ✗ | if (!suballocations2nd.empty()) | |
| 9842 | { | ||
| 9843 | // Null item at the end should be just pop_back(). | ||
| 9844 | ✗ | VMA_VALIDATE(suballocations2nd.back().hAllocation != VK_NULL_HANDLE); | |
| 9845 | } | ||
| 9846 | |||
| 9847 | ✗ | VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size()); | |
| 9848 | ✗ | VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size()); | |
| 9849 | |||
| 9850 | ✗ | VkDeviceSize sumUsedSize = 0; | |
| 9851 | ✗ | const size_t suballoc1stCount = suballocations1st.size(); | |
| 9852 | ✗ | VkDeviceSize offset = VMA_DEBUG_MARGIN; | |
| 9853 | |||
| 9854 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) | |
| 9855 | { | ||
| 9856 | ✗ | const size_t suballoc2ndCount = suballocations2nd.size(); | |
| 9857 | ✗ | size_t nullItem2ndCount = 0; | |
| 9858 | ✗ | for (size_t i = 0; i < suballoc2ndCount; ++i) | |
| 9859 | { | ||
| 9860 | ✗ | const VmaSuballocation& suballoc = suballocations2nd[i]; | |
| 9861 | ✗ | const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 9862 | |||
| 9863 | ✗ | VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); | |
| 9864 | ✗ | VMA_VALIDATE(suballoc.offset >= offset); | |
| 9865 | |||
| 9866 | ✗ | if (!currFree) | |
| 9867 | { | ||
| 9868 | ✗ | VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); | |
| 9869 | ✗ | VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); | |
| 9870 | ✗ | sumUsedSize += suballoc.size; | |
| 9871 | } | ||
| 9872 | else | ||
| 9873 | { | ||
| 9874 | ✗ | ++nullItem2ndCount; | |
| 9875 | } | ||
| 9876 | |||
| 9877 | ✗ | offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; | |
| 9878 | } | ||
| 9879 | |||
| 9880 | ✗ | VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); | |
| 9881 | } | ||
| 9882 | |||
| 9883 | ✗ | for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i) | |
| 9884 | { | ||
| 9885 | ✗ | const VmaSuballocation& suballoc = suballocations1st[i]; | |
| 9886 | ✗ | VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE && | |
| 9887 | suballoc.hAllocation == VK_NULL_HANDLE); | ||
| 9888 | } | ||
| 9889 | |||
| 9890 | ✗ | size_t nullItem1stCount = m_1stNullItemsBeginCount; | |
| 9891 | |||
| 9892 | ✗ | for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) | |
| 9893 | { | ||
| 9894 | ✗ | const VmaSuballocation& suballoc = suballocations1st[i]; | |
| 9895 | ✗ | const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 9896 | |||
| 9897 | ✗ | VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); | |
| 9898 | ✗ | VMA_VALIDATE(suballoc.offset >= offset); | |
| 9899 | ✗ | VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree); | |
| 9900 | |||
| 9901 | ✗ | if (!currFree) | |
| 9902 | { | ||
| 9903 | ✗ | VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); | |
| 9904 | ✗ | VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); | |
| 9905 | ✗ | sumUsedSize += suballoc.size; | |
| 9906 | } | ||
| 9907 | else | ||
| 9908 | { | ||
| 9909 | ✗ | ++nullItem1stCount; | |
| 9910 | } | ||
| 9911 | |||
| 9912 | ✗ | offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; | |
| 9913 | } | ||
| 9914 | ✗ | VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount); | |
| 9915 | |||
| 9916 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) | |
| 9917 | { | ||
| 9918 | ✗ | const size_t suballoc2ndCount = suballocations2nd.size(); | |
| 9919 | ✗ | size_t nullItem2ndCount = 0; | |
| 9920 | ✗ | for (size_t i = suballoc2ndCount; i--; ) | |
| 9921 | { | ||
| 9922 | ✗ | const VmaSuballocation& suballoc = suballocations2nd[i]; | |
| 9923 | ✗ | const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); | |
| 9924 | |||
| 9925 | ✗ | VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); | |
| 9926 | ✗ | VMA_VALIDATE(suballoc.offset >= offset); | |
| 9927 | |||
| 9928 | ✗ | if (!currFree) | |
| 9929 | { | ||
| 9930 | ✗ | VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); | |
| 9931 | ✗ | VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); | |
| 9932 | ✗ | sumUsedSize += suballoc.size; | |
| 9933 | } | ||
| 9934 | else | ||
| 9935 | { | ||
| 9936 | ✗ | ++nullItem2ndCount; | |
| 9937 | } | ||
| 9938 | |||
| 9939 | ✗ | offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; | |
| 9940 | } | ||
| 9941 | |||
| 9942 | ✗ | VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); | |
| 9943 | } | ||
| 9944 | |||
| 9945 | ✗ | VMA_VALIDATE(offset <= GetSize()); | |
| 9946 | ✗ | VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize); | |
| 9947 | |||
| 9948 | ✗ | return true; | |
| 9949 | } | ||
| 9950 | |||
| 9951 | size_t VmaBlockMetadata_Linear::GetAllocationCount() const | ||
| 9952 | { | ||
| 9953 | ✗ | return AccessSuballocations1st().size() - (m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount) + | |
| 9954 | ✗ | AccessSuballocations2nd().size() - m_2ndNullItemsCount; | |
| 9955 | } | ||
| 9956 | |||
| 9957 | VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const | ||
| 9958 | { | ||
| 9959 | ✗ | const VkDeviceSize size = GetSize(); | |
| 9960 | |||
| 9961 | /* | ||
| 9962 | We don't consider gaps inside allocation vectors with freed allocations because | ||
| 9963 | they are not suitable for reuse in linear allocator. We consider only space that | ||
| 9964 | is available for new allocations. | ||
| 9965 | */ | ||
| 9966 | ✗ | if (IsEmpty()) | |
| 9967 | { | ||
| 9968 | ✗ | return size; | |
| 9969 | } | ||
| 9970 | |||
| 9971 | ✗ | const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 9972 | |||
| 9973 | ✗ | switch (m_2ndVectorMode) | |
| 9974 | { | ||
| 9975 | ✗ | case SECOND_VECTOR_EMPTY: | |
| 9976 | /* | ||
| 9977 | Available space is after end of 1st, as well as before beginning of 1st (which | ||
| 9978 | whould make it a ring buffer). | ||
| 9979 | */ | ||
| 9980 | { | ||
| 9981 | ✗ | const size_t suballocations1stCount = suballocations1st.size(); | |
| 9982 | ✗ | VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount); | |
| 9983 | ✗ | const VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; | |
| 9984 | ✗ | const VmaSuballocation& lastSuballoc = suballocations1st[suballocations1stCount - 1]; | |
| 9985 | ✗ | return VMA_MAX( | |
| 9986 | firstSuballoc.offset, | ||
| 9987 | size - (lastSuballoc.offset + lastSuballoc.size)); | ||
| 9988 | } | ||
| 9989 | break; | ||
| 9990 | |||
| 9991 | ✗ | case SECOND_VECTOR_RING_BUFFER: | |
| 9992 | /* | ||
| 9993 | Available space is only between end of 2nd and beginning of 1st. | ||
| 9994 | */ | ||
| 9995 | { | ||
| 9996 | ✗ | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 9997 | ✗ | const VmaSuballocation& lastSuballoc2nd = suballocations2nd.back(); | |
| 9998 | ✗ | const VmaSuballocation& firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount]; | |
| 9999 | ✗ | return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size); | |
| 10000 | } | ||
| 10001 | break; | ||
| 10002 | |||
| 10003 | ✗ | case SECOND_VECTOR_DOUBLE_STACK: | |
| 10004 | /* | ||
| 10005 | Available space is only between end of 1st and top of 2nd. | ||
| 10006 | */ | ||
| 10007 | { | ||
| 10008 | ✗ | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 10009 | ✗ | const VmaSuballocation& topSuballoc2nd = suballocations2nd.back(); | |
| 10010 | ✗ | const VmaSuballocation& lastSuballoc1st = suballocations1st.back(); | |
| 10011 | ✗ | return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size); | |
| 10012 | } | ||
| 10013 | break; | ||
| 10014 | |||
| 10015 | ✗ | default: | |
| 10016 | ✗ | VMA_ASSERT(0); | |
| 10017 | return 0; | ||
| 10018 | } | ||
| 10019 | } | ||
| 10020 | |||
| 10021 | void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const | ||
| 10022 | { | ||
| 10023 | ✗ | const VkDeviceSize size = GetSize(); | |
| 10024 | ✗ | const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 10025 | ✗ | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 10026 | ✗ | const size_t suballoc1stCount = suballocations1st.size(); | |
| 10027 | ✗ | const size_t suballoc2ndCount = suballocations2nd.size(); | |
| 10028 | |||
| 10029 | ✗ | outInfo.blockCount = 1; | |
| 10030 | ✗ | outInfo.allocationCount = (uint32_t)GetAllocationCount(); | |
| 10031 | ✗ | outInfo.unusedRangeCount = 0; | |
| 10032 | ✗ | outInfo.usedBytes = 0; | |
| 10033 | ✗ | outInfo.allocationSizeMin = UINT64_MAX; | |
| 10034 | ✗ | outInfo.allocationSizeMax = 0; | |
| 10035 | ✗ | outInfo.unusedRangeSizeMin = UINT64_MAX; | |
| 10036 | ✗ | outInfo.unusedRangeSizeMax = 0; | |
| 10037 | |||
| 10038 | ✗ | VkDeviceSize lastOffset = 0; | |
| 10039 | |||
| 10040 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) | |
| 10041 | { | ||
| 10042 | ✗ | const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; | |
| 10043 | ✗ | size_t nextAlloc2ndIndex = 0; | |
| 10044 | ✗ | while (lastOffset < freeSpace2ndTo1stEnd) | |
| 10045 | { | ||
| 10046 | // Find next non-null allocation or move nextAllocIndex to the end. | ||
| 10047 | ✗ | while (nextAlloc2ndIndex < suballoc2ndCount && | |
| 10048 | ✗ | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) | |
| 10049 | { | ||
| 10050 | ✗ | ++nextAlloc2ndIndex; | |
| 10051 | } | ||
| 10052 | |||
| 10053 | // Found non-null allocation. | ||
| 10054 | ✗ | if (nextAlloc2ndIndex < suballoc2ndCount) | |
| 10055 | { | ||
| 10056 | ✗ | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; | |
| 10057 | |||
| 10058 | // 1. Process free space before this allocation. | ||
| 10059 | ✗ | if (lastOffset < suballoc.offset) | |
| 10060 | { | ||
| 10061 | // There is free space from lastOffset to suballoc.offset. | ||
| 10062 | ✗ | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; | |
| 10063 | ✗ | ++outInfo.unusedRangeCount; | |
| 10064 | ✗ | outInfo.unusedBytes += unusedRangeSize; | |
| 10065 | ✗ | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); | |
| 10066 | ✗ | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); | |
| 10067 | } | ||
| 10068 | |||
| 10069 | // 2. Process this allocation. | ||
| 10070 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10071 | ✗ | outInfo.usedBytes += suballoc.size; | |
| 10072 | ✗ | outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); | |
| 10073 | ✗ | outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); | |
| 10074 | |||
| 10075 | // 3. Prepare for next iteration. | ||
| 10076 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10077 | ✗ | ++nextAlloc2ndIndex; | |
| 10078 | } | ||
| 10079 | // We are at the end. | ||
| 10080 | else | ||
| 10081 | { | ||
| 10082 | // There is free space from lastOffset to freeSpace2ndTo1stEnd. | ||
| 10083 | ✗ | if (lastOffset < freeSpace2ndTo1stEnd) | |
| 10084 | { | ||
| 10085 | ✗ | const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; | |
| 10086 | ✗ | ++outInfo.unusedRangeCount; | |
| 10087 | ✗ | outInfo.unusedBytes += unusedRangeSize; | |
| 10088 | ✗ | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); | |
| 10089 | ✗ | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); | |
| 10090 | } | ||
| 10091 | |||
| 10092 | // End of loop. | ||
| 10093 | ✗ | lastOffset = freeSpace2ndTo1stEnd; | |
| 10094 | } | ||
| 10095 | } | ||
| 10096 | } | ||
| 10097 | |||
| 10098 | ✗ | size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; | |
| 10099 | const VkDeviceSize freeSpace1stTo2ndEnd = | ||
| 10100 | ✗ | m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; | |
| 10101 | ✗ | while (lastOffset < freeSpace1stTo2ndEnd) | |
| 10102 | { | ||
| 10103 | // Find next non-null allocation or move nextAllocIndex to the end. | ||
| 10104 | ✗ | while (nextAlloc1stIndex < suballoc1stCount && | |
| 10105 | ✗ | suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) | |
| 10106 | { | ||
| 10107 | ✗ | ++nextAlloc1stIndex; | |
| 10108 | } | ||
| 10109 | |||
| 10110 | // Found non-null allocation. | ||
| 10111 | ✗ | if (nextAlloc1stIndex < suballoc1stCount) | |
| 10112 | { | ||
| 10113 | ✗ | const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; | |
| 10114 | |||
| 10115 | // 1. Process free space before this allocation. | ||
| 10116 | ✗ | if (lastOffset < suballoc.offset) | |
| 10117 | { | ||
| 10118 | // There is free space from lastOffset to suballoc.offset. | ||
| 10119 | ✗ | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; | |
| 10120 | ✗ | ++outInfo.unusedRangeCount; | |
| 10121 | ✗ | outInfo.unusedBytes += unusedRangeSize; | |
| 10122 | ✗ | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); | |
| 10123 | ✗ | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); | |
| 10124 | } | ||
| 10125 | |||
| 10126 | // 2. Process this allocation. | ||
| 10127 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10128 | ✗ | outInfo.usedBytes += suballoc.size; | |
| 10129 | ✗ | outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); | |
| 10130 | ✗ | outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); | |
| 10131 | |||
| 10132 | // 3. Prepare for next iteration. | ||
| 10133 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10134 | ✗ | ++nextAlloc1stIndex; | |
| 10135 | } | ||
| 10136 | // We are at the end. | ||
| 10137 | else | ||
| 10138 | { | ||
| 10139 | // There is free space from lastOffset to freeSpace1stTo2ndEnd. | ||
| 10140 | ✗ | if (lastOffset < freeSpace1stTo2ndEnd) | |
| 10141 | { | ||
| 10142 | ✗ | const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; | |
| 10143 | ✗ | ++outInfo.unusedRangeCount; | |
| 10144 | ✗ | outInfo.unusedBytes += unusedRangeSize; | |
| 10145 | ✗ | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); | |
| 10146 | ✗ | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); | |
| 10147 | } | ||
| 10148 | |||
| 10149 | // End of loop. | ||
| 10150 | ✗ | lastOffset = freeSpace1stTo2ndEnd; | |
| 10151 | } | ||
| 10152 | } | ||
| 10153 | |||
| 10154 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) | |
| 10155 | { | ||
| 10156 | ✗ | size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; | |
| 10157 | ✗ | while (lastOffset < size) | |
| 10158 | { | ||
| 10159 | // Find next non-null allocation or move nextAllocIndex to the end. | ||
| 10160 | ✗ | while (nextAlloc2ndIndex != SIZE_MAX && | |
| 10161 | ✗ | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) | |
| 10162 | { | ||
| 10163 | ✗ | --nextAlloc2ndIndex; | |
| 10164 | } | ||
| 10165 | |||
| 10166 | // Found non-null allocation. | ||
| 10167 | ✗ | if (nextAlloc2ndIndex != SIZE_MAX) | |
| 10168 | { | ||
| 10169 | ✗ | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; | |
| 10170 | |||
| 10171 | // 1. Process free space before this allocation. | ||
| 10172 | ✗ | if (lastOffset < suballoc.offset) | |
| 10173 | { | ||
| 10174 | // There is free space from lastOffset to suballoc.offset. | ||
| 10175 | ✗ | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; | |
| 10176 | ✗ | ++outInfo.unusedRangeCount; | |
| 10177 | ✗ | outInfo.unusedBytes += unusedRangeSize; | |
| 10178 | ✗ | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); | |
| 10179 | ✗ | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); | |
| 10180 | } | ||
| 10181 | |||
| 10182 | // 2. Process this allocation. | ||
| 10183 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10184 | ✗ | outInfo.usedBytes += suballoc.size; | |
| 10185 | ✗ | outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); | |
| 10186 | ✗ | outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); | |
| 10187 | |||
| 10188 | // 3. Prepare for next iteration. | ||
| 10189 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10190 | ✗ | --nextAlloc2ndIndex; | |
| 10191 | } | ||
| 10192 | // We are at the end. | ||
| 10193 | else | ||
| 10194 | { | ||
| 10195 | // There is free space from lastOffset to size. | ||
| 10196 | ✗ | if (lastOffset < size) | |
| 10197 | { | ||
| 10198 | ✗ | const VkDeviceSize unusedRangeSize = size - lastOffset; | |
| 10199 | ✗ | ++outInfo.unusedRangeCount; | |
| 10200 | ✗ | outInfo.unusedBytes += unusedRangeSize; | |
| 10201 | ✗ | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); | |
| 10202 | ✗ | outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); | |
| 10203 | } | ||
| 10204 | |||
| 10205 | // End of loop. | ||
| 10206 | ✗ | lastOffset = size; | |
| 10207 | } | ||
| 10208 | } | ||
| 10209 | } | ||
| 10210 | |||
| 10211 | ✗ | outInfo.unusedBytes = size - outInfo.usedBytes; | |
| 10212 | ✗ | } | |
| 10213 | |||
| 10214 | void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const | ||
| 10215 | { | ||
| 10216 | ✗ | const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 10217 | ✗ | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 10218 | ✗ | const VkDeviceSize size = GetSize(); | |
| 10219 | ✗ | const size_t suballoc1stCount = suballocations1st.size(); | |
| 10220 | ✗ | const size_t suballoc2ndCount = suballocations2nd.size(); | |
| 10221 | |||
| 10222 | ✗ | inoutStats.size += size; | |
| 10223 | |||
| 10224 | ✗ | VkDeviceSize lastOffset = 0; | |
| 10225 | |||
| 10226 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) | |
| 10227 | { | ||
| 10228 | ✗ | const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; | |
| 10229 | ✗ | size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount; | |
| 10230 | ✗ | while (lastOffset < freeSpace2ndTo1stEnd) | |
| 10231 | { | ||
| 10232 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. | ||
| 10233 | ✗ | while (nextAlloc2ndIndex < suballoc2ndCount && | |
| 10234 | ✗ | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) | |
| 10235 | { | ||
| 10236 | ✗ | ++nextAlloc2ndIndex; | |
| 10237 | } | ||
| 10238 | |||
| 10239 | // Found non-null allocation. | ||
| 10240 | ✗ | if (nextAlloc2ndIndex < suballoc2ndCount) | |
| 10241 | { | ||
| 10242 | ✗ | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; | |
| 10243 | |||
| 10244 | // 1. Process free space before this allocation. | ||
| 10245 | ✗ | if (lastOffset < suballoc.offset) | |
| 10246 | { | ||
| 10247 | // There is free space from lastOffset to suballoc.offset. | ||
| 10248 | ✗ | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; | |
| 10249 | ✗ | inoutStats.unusedSize += unusedRangeSize; | |
| 10250 | ✗ | ++inoutStats.unusedRangeCount; | |
| 10251 | ✗ | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); | |
| 10252 | } | ||
| 10253 | |||
| 10254 | // 2. Process this allocation. | ||
| 10255 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10256 | ✗ | ++inoutStats.allocationCount; | |
| 10257 | |||
| 10258 | // 3. Prepare for next iteration. | ||
| 10259 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10260 | ✗ | ++nextAlloc2ndIndex; | |
| 10261 | } | ||
| 10262 | // We are at the end. | ||
| 10263 | else | ||
| 10264 | { | ||
| 10265 | ✗ | if (lastOffset < freeSpace2ndTo1stEnd) | |
| 10266 | { | ||
| 10267 | // There is free space from lastOffset to freeSpace2ndTo1stEnd. | ||
| 10268 | ✗ | const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; | |
| 10269 | ✗ | inoutStats.unusedSize += unusedRangeSize; | |
| 10270 | ✗ | ++inoutStats.unusedRangeCount; | |
| 10271 | ✗ | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); | |
| 10272 | } | ||
| 10273 | |||
| 10274 | // End of loop. | ||
| 10275 | ✗ | lastOffset = freeSpace2ndTo1stEnd; | |
| 10276 | } | ||
| 10277 | } | ||
| 10278 | } | ||
| 10279 | |||
| 10280 | ✗ | size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; | |
| 10281 | const VkDeviceSize freeSpace1stTo2ndEnd = | ||
| 10282 | ✗ | m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; | |
| 10283 | ✗ | while (lastOffset < freeSpace1stTo2ndEnd) | |
| 10284 | { | ||
| 10285 | // Find next non-null allocation or move nextAllocIndex to the end. | ||
| 10286 | ✗ | while (nextAlloc1stIndex < suballoc1stCount && | |
| 10287 | ✗ | suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) | |
| 10288 | { | ||
| 10289 | ✗ | ++nextAlloc1stIndex; | |
| 10290 | } | ||
| 10291 | |||
| 10292 | // Found non-null allocation. | ||
| 10293 | ✗ | if (nextAlloc1stIndex < suballoc1stCount) | |
| 10294 | { | ||
| 10295 | ✗ | const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; | |
| 10296 | |||
| 10297 | // 1. Process free space before this allocation. | ||
| 10298 | ✗ | if (lastOffset < suballoc.offset) | |
| 10299 | { | ||
| 10300 | // There is free space from lastOffset to suballoc.offset. | ||
| 10301 | ✗ | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; | |
| 10302 | ✗ | inoutStats.unusedSize += unusedRangeSize; | |
| 10303 | ✗ | ++inoutStats.unusedRangeCount; | |
| 10304 | ✗ | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); | |
| 10305 | } | ||
| 10306 | |||
| 10307 | // 2. Process this allocation. | ||
| 10308 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10309 | ✗ | ++inoutStats.allocationCount; | |
| 10310 | |||
| 10311 | // 3. Prepare for next iteration. | ||
| 10312 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10313 | ✗ | ++nextAlloc1stIndex; | |
| 10314 | } | ||
| 10315 | // We are at the end. | ||
| 10316 | else | ||
| 10317 | { | ||
| 10318 | ✗ | if (lastOffset < freeSpace1stTo2ndEnd) | |
| 10319 | { | ||
| 10320 | // There is free space from lastOffset to freeSpace1stTo2ndEnd. | ||
| 10321 | ✗ | const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; | |
| 10322 | ✗ | inoutStats.unusedSize += unusedRangeSize; | |
| 10323 | ✗ | ++inoutStats.unusedRangeCount; | |
| 10324 | ✗ | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); | |
| 10325 | } | ||
| 10326 | |||
| 10327 | // End of loop. | ||
| 10328 | ✗ | lastOffset = freeSpace1stTo2ndEnd; | |
| 10329 | } | ||
| 10330 | } | ||
| 10331 | |||
| 10332 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) | |
| 10333 | { | ||
| 10334 | ✗ | size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; | |
| 10335 | ✗ | while (lastOffset < size) | |
| 10336 | { | ||
| 10337 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. | ||
| 10338 | ✗ | while (nextAlloc2ndIndex != SIZE_MAX && | |
| 10339 | ✗ | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) | |
| 10340 | { | ||
| 10341 | ✗ | --nextAlloc2ndIndex; | |
| 10342 | } | ||
| 10343 | |||
| 10344 | // Found non-null allocation. | ||
| 10345 | ✗ | if (nextAlloc2ndIndex != SIZE_MAX) | |
| 10346 | { | ||
| 10347 | ✗ | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; | |
| 10348 | |||
| 10349 | // 1. Process free space before this allocation. | ||
| 10350 | ✗ | if (lastOffset < suballoc.offset) | |
| 10351 | { | ||
| 10352 | // There is free space from lastOffset to suballoc.offset. | ||
| 10353 | ✗ | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; | |
| 10354 | ✗ | inoutStats.unusedSize += unusedRangeSize; | |
| 10355 | ✗ | ++inoutStats.unusedRangeCount; | |
| 10356 | ✗ | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); | |
| 10357 | } | ||
| 10358 | |||
| 10359 | // 2. Process this allocation. | ||
| 10360 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10361 | ✗ | ++inoutStats.allocationCount; | |
| 10362 | |||
| 10363 | // 3. Prepare for next iteration. | ||
| 10364 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10365 | ✗ | --nextAlloc2ndIndex; | |
| 10366 | } | ||
| 10367 | // We are at the end. | ||
| 10368 | else | ||
| 10369 | { | ||
| 10370 | ✗ | if (lastOffset < size) | |
| 10371 | { | ||
| 10372 | // There is free space from lastOffset to size. | ||
| 10373 | ✗ | const VkDeviceSize unusedRangeSize = size - lastOffset; | |
| 10374 | ✗ | inoutStats.unusedSize += unusedRangeSize; | |
| 10375 | ✗ | ++inoutStats.unusedRangeCount; | |
| 10376 | ✗ | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); | |
| 10377 | } | ||
| 10378 | |||
| 10379 | // End of loop. | ||
| 10380 | ✗ | lastOffset = size; | |
| 10381 | } | ||
| 10382 | } | ||
| 10383 | } | ||
| 10384 | ✗ | } | |
| 10385 | |||
| 10386 | #if VMA_STATS_STRING_ENABLED | ||
| 10387 | void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const | ||
| 10388 | { | ||
| 10389 | ✗ | const VkDeviceSize size = GetSize(); | |
| 10390 | ✗ | const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 10391 | ✗ | const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 10392 | ✗ | const size_t suballoc1stCount = suballocations1st.size(); | |
| 10393 | ✗ | const size_t suballoc2ndCount = suballocations2nd.size(); | |
| 10394 | |||
| 10395 | // FIRST PASS | ||
| 10396 | |||
| 10397 | ✗ | size_t unusedRangeCount = 0; | |
| 10398 | ✗ | VkDeviceSize usedBytes = 0; | |
| 10399 | |||
| 10400 | ✗ | VkDeviceSize lastOffset = 0; | |
| 10401 | |||
| 10402 | ✗ | size_t alloc2ndCount = 0; | |
| 10403 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) | |
| 10404 | { | ||
| 10405 | ✗ | const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; | |
| 10406 | ✗ | size_t nextAlloc2ndIndex = 0; | |
| 10407 | ✗ | while (lastOffset < freeSpace2ndTo1stEnd) | |
| 10408 | { | ||
| 10409 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. | ||
| 10410 | ✗ | while (nextAlloc2ndIndex < suballoc2ndCount && | |
| 10411 | ✗ | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) | |
| 10412 | { | ||
| 10413 | ✗ | ++nextAlloc2ndIndex; | |
| 10414 | } | ||
| 10415 | |||
| 10416 | // Found non-null allocation. | ||
| 10417 | ✗ | if (nextAlloc2ndIndex < suballoc2ndCount) | |
| 10418 | { | ||
| 10419 | ✗ | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; | |
| 10420 | |||
| 10421 | // 1. Process free space before this allocation. | ||
| 10422 | ✗ | if (lastOffset < suballoc.offset) | |
| 10423 | { | ||
| 10424 | // There is free space from lastOffset to suballoc.offset. | ||
| 10425 | ✗ | ++unusedRangeCount; | |
| 10426 | } | ||
| 10427 | |||
| 10428 | // 2. Process this allocation. | ||
| 10429 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10430 | ✗ | ++alloc2ndCount; | |
| 10431 | ✗ | usedBytes += suballoc.size; | |
| 10432 | |||
| 10433 | // 3. Prepare for next iteration. | ||
| 10434 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10435 | ✗ | ++nextAlloc2ndIndex; | |
| 10436 | } | ||
| 10437 | // We are at the end. | ||
| 10438 | else | ||
| 10439 | { | ||
| 10440 | ✗ | if (lastOffset < freeSpace2ndTo1stEnd) | |
| 10441 | { | ||
| 10442 | // There is free space from lastOffset to freeSpace2ndTo1stEnd. | ||
| 10443 | ✗ | ++unusedRangeCount; | |
| 10444 | } | ||
| 10445 | |||
| 10446 | // End of loop. | ||
| 10447 | ✗ | lastOffset = freeSpace2ndTo1stEnd; | |
| 10448 | } | ||
| 10449 | } | ||
| 10450 | } | ||
| 10451 | |||
| 10452 | ✗ | size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; | |
| 10453 | ✗ | size_t alloc1stCount = 0; | |
| 10454 | const VkDeviceSize freeSpace1stTo2ndEnd = | ||
| 10455 | ✗ | m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; | |
| 10456 | ✗ | while (lastOffset < freeSpace1stTo2ndEnd) | |
| 10457 | { | ||
| 10458 | // Find next non-null allocation or move nextAllocIndex to the end. | ||
| 10459 | ✗ | while (nextAlloc1stIndex < suballoc1stCount && | |
| 10460 | ✗ | suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) | |
| 10461 | { | ||
| 10462 | ✗ | ++nextAlloc1stIndex; | |
| 10463 | } | ||
| 10464 | |||
| 10465 | // Found non-null allocation. | ||
| 10466 | ✗ | if (nextAlloc1stIndex < suballoc1stCount) | |
| 10467 | { | ||
| 10468 | ✗ | const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; | |
| 10469 | |||
| 10470 | // 1. Process free space before this allocation. | ||
| 10471 | ✗ | if (lastOffset < suballoc.offset) | |
| 10472 | { | ||
| 10473 | // There is free space from lastOffset to suballoc.offset. | ||
| 10474 | ✗ | ++unusedRangeCount; | |
| 10475 | } | ||
| 10476 | |||
| 10477 | // 2. Process this allocation. | ||
| 10478 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10479 | ✗ | ++alloc1stCount; | |
| 10480 | ✗ | usedBytes += suballoc.size; | |
| 10481 | |||
| 10482 | // 3. Prepare for next iteration. | ||
| 10483 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10484 | ✗ | ++nextAlloc1stIndex; | |
| 10485 | } | ||
| 10486 | // We are at the end. | ||
| 10487 | else | ||
| 10488 | { | ||
| 10489 | ✗ | if (lastOffset < size) | |
| 10490 | { | ||
| 10491 | // There is free space from lastOffset to freeSpace1stTo2ndEnd. | ||
| 10492 | ✗ | ++unusedRangeCount; | |
| 10493 | } | ||
| 10494 | |||
| 10495 | // End of loop. | ||
| 10496 | ✗ | lastOffset = freeSpace1stTo2ndEnd; | |
| 10497 | } | ||
| 10498 | } | ||
| 10499 | |||
| 10500 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) | |
| 10501 | { | ||
| 10502 | ✗ | size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; | |
| 10503 | ✗ | while (lastOffset < size) | |
| 10504 | { | ||
| 10505 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. | ||
| 10506 | ✗ | while (nextAlloc2ndIndex != SIZE_MAX && | |
| 10507 | ✗ | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) | |
| 10508 | { | ||
| 10509 | ✗ | --nextAlloc2ndIndex; | |
| 10510 | } | ||
| 10511 | |||
| 10512 | // Found non-null allocation. | ||
| 10513 | ✗ | if (nextAlloc2ndIndex != SIZE_MAX) | |
| 10514 | { | ||
| 10515 | ✗ | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; | |
| 10516 | |||
| 10517 | // 1. Process free space before this allocation. | ||
| 10518 | ✗ | if (lastOffset < suballoc.offset) | |
| 10519 | { | ||
| 10520 | // There is free space from lastOffset to suballoc.offset. | ||
| 10521 | ✗ | ++unusedRangeCount; | |
| 10522 | } | ||
| 10523 | |||
| 10524 | // 2. Process this allocation. | ||
| 10525 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10526 | ✗ | ++alloc2ndCount; | |
| 10527 | ✗ | usedBytes += suballoc.size; | |
| 10528 | |||
| 10529 | // 3. Prepare for next iteration. | ||
| 10530 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10531 | ✗ | --nextAlloc2ndIndex; | |
| 10532 | } | ||
| 10533 | // We are at the end. | ||
| 10534 | else | ||
| 10535 | { | ||
| 10536 | ✗ | if (lastOffset < size) | |
| 10537 | { | ||
| 10538 | // There is free space from lastOffset to size. | ||
| 10539 | ✗ | ++unusedRangeCount; | |
| 10540 | } | ||
| 10541 | |||
| 10542 | // End of loop. | ||
| 10543 | ✗ | lastOffset = size; | |
| 10544 | } | ||
| 10545 | } | ||
| 10546 | } | ||
| 10547 | |||
| 10548 | ✗ | const VkDeviceSize unusedBytes = size - usedBytes; | |
| 10549 | ✗ | PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount); | |
| 10550 | |||
| 10551 | // SECOND PASS | ||
| 10552 | ✗ | lastOffset = 0; | |
| 10553 | |||
| 10554 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) | |
| 10555 | { | ||
| 10556 | ✗ | const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; | |
| 10557 | ✗ | size_t nextAlloc2ndIndex = 0; | |
| 10558 | ✗ | while (lastOffset < freeSpace2ndTo1stEnd) | |
| 10559 | { | ||
| 10560 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. | ||
| 10561 | ✗ | while (nextAlloc2ndIndex < suballoc2ndCount && | |
| 10562 | ✗ | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) | |
| 10563 | { | ||
| 10564 | ✗ | ++nextAlloc2ndIndex; | |
| 10565 | } | ||
| 10566 | |||
| 10567 | // Found non-null allocation. | ||
| 10568 | ✗ | if (nextAlloc2ndIndex < suballoc2ndCount) | |
| 10569 | { | ||
| 10570 | ✗ | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; | |
| 10571 | |||
| 10572 | // 1. Process free space before this allocation. | ||
| 10573 | ✗ | if (lastOffset < suballoc.offset) | |
| 10574 | { | ||
| 10575 | // There is free space from lastOffset to suballoc.offset. | ||
| 10576 | ✗ | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; | |
| 10577 | ✗ | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); | |
| 10578 | } | ||
| 10579 | |||
| 10580 | // 2. Process this allocation. | ||
| 10581 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10582 | ✗ | PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); | |
| 10583 | |||
| 10584 | // 3. Prepare for next iteration. | ||
| 10585 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10586 | ✗ | ++nextAlloc2ndIndex; | |
| 10587 | } | ||
| 10588 | // We are at the end. | ||
| 10589 | else | ||
| 10590 | { | ||
| 10591 | ✗ | if (lastOffset < freeSpace2ndTo1stEnd) | |
| 10592 | { | ||
| 10593 | // There is free space from lastOffset to freeSpace2ndTo1stEnd. | ||
| 10594 | ✗ | const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; | |
| 10595 | ✗ | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); | |
| 10596 | } | ||
| 10597 | |||
| 10598 | // End of loop. | ||
| 10599 | ✗ | lastOffset = freeSpace2ndTo1stEnd; | |
| 10600 | } | ||
| 10601 | } | ||
| 10602 | } | ||
| 10603 | |||
| 10604 | ✗ | nextAlloc1stIndex = m_1stNullItemsBeginCount; | |
| 10605 | ✗ | while (lastOffset < freeSpace1stTo2ndEnd) | |
| 10606 | { | ||
| 10607 | // Find next non-null allocation or move nextAllocIndex to the end. | ||
| 10608 | ✗ | while (nextAlloc1stIndex < suballoc1stCount && | |
| 10609 | ✗ | suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) | |
| 10610 | { | ||
| 10611 | ✗ | ++nextAlloc1stIndex; | |
| 10612 | } | ||
| 10613 | |||
| 10614 | // Found non-null allocation. | ||
| 10615 | ✗ | if (nextAlloc1stIndex < suballoc1stCount) | |
| 10616 | { | ||
| 10617 | ✗ | const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; | |
| 10618 | |||
| 10619 | // 1. Process free space before this allocation. | ||
| 10620 | ✗ | if (lastOffset < suballoc.offset) | |
| 10621 | { | ||
| 10622 | // There is free space from lastOffset to suballoc.offset. | ||
| 10623 | ✗ | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; | |
| 10624 | ✗ | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); | |
| 10625 | } | ||
| 10626 | |||
| 10627 | // 2. Process this allocation. | ||
| 10628 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10629 | ✗ | PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); | |
| 10630 | |||
| 10631 | // 3. Prepare for next iteration. | ||
| 10632 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10633 | ✗ | ++nextAlloc1stIndex; | |
| 10634 | } | ||
| 10635 | // We are at the end. | ||
| 10636 | else | ||
| 10637 | { | ||
| 10638 | ✗ | if (lastOffset < freeSpace1stTo2ndEnd) | |
| 10639 | { | ||
| 10640 | // There is free space from lastOffset to freeSpace1stTo2ndEnd. | ||
| 10641 | ✗ | const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; | |
| 10642 | ✗ | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); | |
| 10643 | } | ||
| 10644 | |||
| 10645 | // End of loop. | ||
| 10646 | ✗ | lastOffset = freeSpace1stTo2ndEnd; | |
| 10647 | } | ||
| 10648 | } | ||
| 10649 | |||
| 10650 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) | |
| 10651 | { | ||
| 10652 | ✗ | size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; | |
| 10653 | ✗ | while (lastOffset < size) | |
| 10654 | { | ||
| 10655 | // Find next non-null allocation or move nextAlloc2ndIndex to the end. | ||
| 10656 | ✗ | while (nextAlloc2ndIndex != SIZE_MAX && | |
| 10657 | ✗ | suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) | |
| 10658 | { | ||
| 10659 | ✗ | --nextAlloc2ndIndex; | |
| 10660 | } | ||
| 10661 | |||
| 10662 | // Found non-null allocation. | ||
| 10663 | ✗ | if (nextAlloc2ndIndex != SIZE_MAX) | |
| 10664 | { | ||
| 10665 | ✗ | const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; | |
| 10666 | |||
| 10667 | // 1. Process free space before this allocation. | ||
| 10668 | ✗ | if (lastOffset < suballoc.offset) | |
| 10669 | { | ||
| 10670 | // There is free space from lastOffset to suballoc.offset. | ||
| 10671 | ✗ | const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; | |
| 10672 | ✗ | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); | |
| 10673 | } | ||
| 10674 | |||
| 10675 | // 2. Process this allocation. | ||
| 10676 | // There is allocation with suballoc.offset, suballoc.size. | ||
| 10677 | ✗ | PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); | |
| 10678 | |||
| 10679 | // 3. Prepare for next iteration. | ||
| 10680 | ✗ | lastOffset = suballoc.offset + suballoc.size; | |
| 10681 | ✗ | --nextAlloc2ndIndex; | |
| 10682 | } | ||
| 10683 | // We are at the end. | ||
| 10684 | else | ||
| 10685 | { | ||
| 10686 | ✗ | if (lastOffset < size) | |
| 10687 | { | ||
| 10688 | // There is free space from lastOffset to size. | ||
| 10689 | ✗ | const VkDeviceSize unusedRangeSize = size - lastOffset; | |
| 10690 | ✗ | PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); | |
| 10691 | } | ||
| 10692 | |||
| 10693 | // End of loop. | ||
| 10694 | ✗ | lastOffset = size; | |
| 10695 | } | ||
| 10696 | } | ||
| 10697 | } | ||
| 10698 | |||
| 10699 | ✗ | PrintDetailedMap_End(json); | |
| 10700 | ✗ | } | |
| 10701 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 10702 | |||
| 10703 | bool VmaBlockMetadata_Linear::CreateAllocationRequest( | ||
| 10704 | uint32_t currentFrameIndex, | ||
| 10705 | uint32_t frameInUseCount, | ||
| 10706 | VkDeviceSize bufferImageGranularity, | ||
| 10707 | VkDeviceSize allocSize, | ||
| 10708 | VkDeviceSize allocAlignment, | ||
| 10709 | bool upperAddress, | ||
| 10710 | VmaSuballocationType allocType, | ||
| 10711 | bool canMakeOtherLost, | ||
| 10712 | uint32_t strategy, | ||
| 10713 | VmaAllocationRequest* pAllocationRequest) | ||
| 10714 | { | ||
| 10715 | ✗ | VMA_ASSERT(allocSize > 0); | |
| 10716 | ✗ | VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); | |
| 10717 | ✗ | VMA_ASSERT(pAllocationRequest != VMA_NULL); | |
| 10718 | VMA_HEAVY_ASSERT(Validate()); | ||
| 10719 | ✗ | return upperAddress ? | |
| 10720 | ✗ | CreateAllocationRequest_UpperAddress( | |
| 10721 | currentFrameIndex, frameInUseCount, bufferImageGranularity, | ||
| 10722 | allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest) : | ||
| 10723 | ✗ | CreateAllocationRequest_LowerAddress( | |
| 10724 | currentFrameIndex, frameInUseCount, bufferImageGranularity, | ||
| 10725 | ✗ | allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest); | |
| 10726 | } | ||
| 10727 | |||
| 10728 | bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress( | ||
| 10729 | uint32_t currentFrameIndex, | ||
| 10730 | uint32_t frameInUseCount, | ||
| 10731 | VkDeviceSize bufferImageGranularity, | ||
| 10732 | VkDeviceSize allocSize, | ||
| 10733 | VkDeviceSize allocAlignment, | ||
| 10734 | VmaSuballocationType allocType, | ||
| 10735 | bool canMakeOtherLost, | ||
| 10736 | uint32_t strategy, | ||
| 10737 | VmaAllocationRequest* pAllocationRequest) | ||
| 10738 | { | ||
| 10739 | ✗ | const VkDeviceSize size = GetSize(); | |
| 10740 | ✗ | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 10741 | ✗ | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 10742 | |||
| 10743 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) | |
| 10744 | { | ||
| 10745 | ✗ | VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer."); | |
| 10746 | return false; | ||
| 10747 | } | ||
| 10748 | |||
| 10749 | // Try to allocate before 2nd.back(), or end of block if 2nd.empty(). | ||
| 10750 | ✗ | if (allocSize > size) | |
| 10751 | { | ||
| 10752 | ✗ | return false; | |
| 10753 | } | ||
| 10754 | ✗ | VkDeviceSize resultBaseOffset = size - allocSize; | |
| 10755 | ✗ | if (!suballocations2nd.empty()) | |
| 10756 | { | ||
| 10757 | ✗ | const VmaSuballocation& lastSuballoc = suballocations2nd.back(); | |
| 10758 | ✗ | resultBaseOffset = lastSuballoc.offset - allocSize; | |
| 10759 | ✗ | if (allocSize > lastSuballoc.offset) | |
| 10760 | { | ||
| 10761 | ✗ | return false; | |
| 10762 | } | ||
| 10763 | } | ||
| 10764 | |||
| 10765 | // Start from offset equal to end of free space. | ||
| 10766 | ✗ | VkDeviceSize resultOffset = resultBaseOffset; | |
| 10767 | |||
| 10768 | // Apply VMA_DEBUG_MARGIN at the end. | ||
| 10769 | if (VMA_DEBUG_MARGIN > 0) | ||
| 10770 | { | ||
| 10771 | if (resultOffset < VMA_DEBUG_MARGIN) | ||
| 10772 | { | ||
| 10773 | return false; | ||
| 10774 | } | ||
| 10775 | resultOffset -= VMA_DEBUG_MARGIN; | ||
| 10776 | } | ||
| 10777 | |||
| 10778 | // Apply alignment. | ||
| 10779 | ✗ | resultOffset = VmaAlignDown(resultOffset, allocAlignment); | |
| 10780 | |||
| 10781 | // Check next suballocations from 2nd for BufferImageGranularity conflicts. | ||
| 10782 | // Make bigger alignment if necessary. | ||
| 10783 | ✗ | if (bufferImageGranularity > 1 && !suballocations2nd.empty()) | |
| 10784 | { | ||
| 10785 | ✗ | bool bufferImageGranularityConflict = false; | |
| 10786 | ✗ | for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) | |
| 10787 | { | ||
| 10788 | ✗ | const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; | |
| 10789 | ✗ | if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) | |
| 10790 | { | ||
| 10791 | ✗ | if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) | |
| 10792 | { | ||
| 10793 | ✗ | bufferImageGranularityConflict = true; | |
| 10794 | ✗ | break; | |
| 10795 | } | ||
| 10796 | } | ||
| 10797 | else | ||
| 10798 | // Already on previous page. | ||
| 10799 | ✗ | break; | |
| 10800 | } | ||
| 10801 | ✗ | if (bufferImageGranularityConflict) | |
| 10802 | { | ||
| 10803 | ✗ | resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity); | |
| 10804 | } | ||
| 10805 | } | ||
| 10806 | |||
| 10807 | // There is enough free space. | ||
| 10808 | ✗ | const VkDeviceSize endOf1st = !suballocations1st.empty() ? | |
| 10809 | ✗ | suballocations1st.back().offset + suballocations1st.back().size : | |
| 10810 | ✗ | 0; | |
| 10811 | ✗ | if (endOf1st + VMA_DEBUG_MARGIN <= resultOffset) | |
| 10812 | { | ||
| 10813 | // Check previous suballocations for BufferImageGranularity conflicts. | ||
| 10814 | // If conflict exists, allocation cannot be made here. | ||
| 10815 | ✗ | if (bufferImageGranularity > 1) | |
| 10816 | { | ||
| 10817 | ✗ | for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) | |
| 10818 | { | ||
| 10819 | ✗ | const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; | |
| 10820 | ✗ | if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) | |
| 10821 | { | ||
| 10822 | ✗ | if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) | |
| 10823 | { | ||
| 10824 | ✗ | return false; | |
| 10825 | } | ||
| 10826 | } | ||
| 10827 | else | ||
| 10828 | { | ||
| 10829 | // Already on next page. | ||
| 10830 | ✗ | break; | |
| 10831 | } | ||
| 10832 | } | ||
| 10833 | } | ||
| 10834 | |||
| 10835 | // All tests passed: Success. | ||
| 10836 | ✗ | pAllocationRequest->offset = resultOffset; | |
| 10837 | ✗ | pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st; | |
| 10838 | ✗ | pAllocationRequest->sumItemSize = 0; | |
| 10839 | // pAllocationRequest->item unused. | ||
| 10840 | ✗ | pAllocationRequest->itemsToMakeLostCount = 0; | |
| 10841 | ✗ | pAllocationRequest->type = VmaAllocationRequestType::UpperAddress; | |
| 10842 | ✗ | return true; | |
| 10843 | } | ||
| 10844 | |||
| 10845 | ✗ | return false; | |
| 10846 | } | ||
| 10847 | |||
| 10848 | bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress( | ||
| 10849 | uint32_t currentFrameIndex, | ||
| 10850 | uint32_t frameInUseCount, | ||
| 10851 | VkDeviceSize bufferImageGranularity, | ||
| 10852 | VkDeviceSize allocSize, | ||
| 10853 | VkDeviceSize allocAlignment, | ||
| 10854 | VmaSuballocationType allocType, | ||
| 10855 | bool canMakeOtherLost, | ||
| 10856 | uint32_t strategy, | ||
| 10857 | VmaAllocationRequest* pAllocationRequest) | ||
| 10858 | { | ||
| 10859 | ✗ | const VkDeviceSize size = GetSize(); | |
| 10860 | ✗ | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 10861 | ✗ | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 10862 | |||
| 10863 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) | |
| 10864 | { | ||
| 10865 | // Try to allocate at the end of 1st vector. | ||
| 10866 | |||
| 10867 | ✗ | VkDeviceSize resultBaseOffset = 0; | |
| 10868 | ✗ | if (!suballocations1st.empty()) | |
| 10869 | { | ||
| 10870 | ✗ | const VmaSuballocation& lastSuballoc = suballocations1st.back(); | |
| 10871 | ✗ | resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; | |
| 10872 | } | ||
| 10873 | |||
| 10874 | // Start from offset equal to beginning of free space. | ||
| 10875 | ✗ | VkDeviceSize resultOffset = resultBaseOffset; | |
| 10876 | |||
| 10877 | // Apply VMA_DEBUG_MARGIN at the beginning. | ||
| 10878 | if (VMA_DEBUG_MARGIN > 0) | ||
| 10879 | { | ||
| 10880 | resultOffset += VMA_DEBUG_MARGIN; | ||
| 10881 | } | ||
| 10882 | |||
| 10883 | // Apply alignment. | ||
| 10884 | ✗ | resultOffset = VmaAlignUp(resultOffset, allocAlignment); | |
| 10885 | |||
| 10886 | // Check previous suballocations for BufferImageGranularity conflicts. | ||
| 10887 | // Make bigger alignment if necessary. | ||
| 10888 | ✗ | if (bufferImageGranularity > 1 && !suballocations1st.empty()) | |
| 10889 | { | ||
| 10890 | ✗ | bool bufferImageGranularityConflict = false; | |
| 10891 | ✗ | for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) | |
| 10892 | { | ||
| 10893 | ✗ | const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; | |
| 10894 | ✗ | if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) | |
| 10895 | { | ||
| 10896 | ✗ | if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) | |
| 10897 | { | ||
| 10898 | ✗ | bufferImageGranularityConflict = true; | |
| 10899 | ✗ | break; | |
| 10900 | } | ||
| 10901 | } | ||
| 10902 | else | ||
| 10903 | // Already on previous page. | ||
| 10904 | ✗ | break; | |
| 10905 | } | ||
| 10906 | ✗ | if (bufferImageGranularityConflict) | |
| 10907 | { | ||
| 10908 | ✗ | resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); | |
| 10909 | } | ||
| 10910 | } | ||
| 10911 | |||
| 10912 | ✗ | const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? | |
| 10913 | ✗ | suballocations2nd.back().offset : size; | |
| 10914 | |||
| 10915 | // There is enough free space at the end after alignment. | ||
| 10916 | ✗ | if (resultOffset + allocSize + VMA_DEBUG_MARGIN <= freeSpaceEnd) | |
| 10917 | { | ||
| 10918 | // Check next suballocations for BufferImageGranularity conflicts. | ||
| 10919 | // If conflict exists, allocation cannot be made here. | ||
| 10920 | ✗ | if (bufferImageGranularity > 1 && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) | |
| 10921 | { | ||
| 10922 | ✗ | for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) | |
| 10923 | { | ||
| 10924 | ✗ | const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; | |
| 10925 | ✗ | if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) | |
| 10926 | { | ||
| 10927 | ✗ | if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) | |
| 10928 | { | ||
| 10929 | ✗ | return false; | |
| 10930 | } | ||
| 10931 | } | ||
| 10932 | else | ||
| 10933 | { | ||
| 10934 | // Already on previous page. | ||
| 10935 | ✗ | break; | |
| 10936 | } | ||
| 10937 | } | ||
| 10938 | } | ||
| 10939 | |||
| 10940 | // All tests passed: Success. | ||
| 10941 | ✗ | pAllocationRequest->offset = resultOffset; | |
| 10942 | ✗ | pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset; | |
| 10943 | ✗ | pAllocationRequest->sumItemSize = 0; | |
| 10944 | // pAllocationRequest->item, customData unused. | ||
| 10945 | ✗ | pAllocationRequest->type = VmaAllocationRequestType::EndOf1st; | |
| 10946 | ✗ | pAllocationRequest->itemsToMakeLostCount = 0; | |
| 10947 | ✗ | return true; | |
| 10948 | } | ||
| 10949 | } | ||
| 10950 | |||
| 10951 | // Wrap-around to end of 2nd vector. Try to allocate there, watching for the | ||
| 10952 | // beginning of 1st vector as the end of free space. | ||
| 10953 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) | |
| 10954 | { | ||
| 10955 | ✗ | VMA_ASSERT(!suballocations1st.empty()); | |
| 10956 | |||
| 10957 | ✗ | VkDeviceSize resultBaseOffset = 0; | |
| 10958 | ✗ | if (!suballocations2nd.empty()) | |
| 10959 | { | ||
| 10960 | ✗ | const VmaSuballocation& lastSuballoc = suballocations2nd.back(); | |
| 10961 | ✗ | resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; | |
| 10962 | } | ||
| 10963 | |||
| 10964 | // Start from offset equal to beginning of free space. | ||
| 10965 | ✗ | VkDeviceSize resultOffset = resultBaseOffset; | |
| 10966 | |||
| 10967 | // Apply VMA_DEBUG_MARGIN at the beginning. | ||
| 10968 | if (VMA_DEBUG_MARGIN > 0) | ||
| 10969 | { | ||
| 10970 | resultOffset += VMA_DEBUG_MARGIN; | ||
| 10971 | } | ||
| 10972 | |||
| 10973 | // Apply alignment. | ||
| 10974 | ✗ | resultOffset = VmaAlignUp(resultOffset, allocAlignment); | |
| 10975 | |||
| 10976 | // Check previous suballocations for BufferImageGranularity conflicts. | ||
| 10977 | // Make bigger alignment if necessary. | ||
| 10978 | ✗ | if (bufferImageGranularity > 1 && !suballocations2nd.empty()) | |
| 10979 | { | ||
| 10980 | ✗ | bool bufferImageGranularityConflict = false; | |
| 10981 | ✗ | for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; ) | |
| 10982 | { | ||
| 10983 | ✗ | const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex]; | |
| 10984 | ✗ | if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) | |
| 10985 | { | ||
| 10986 | ✗ | if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) | |
| 10987 | { | ||
| 10988 | ✗ | bufferImageGranularityConflict = true; | |
| 10989 | ✗ | break; | |
| 10990 | } | ||
| 10991 | } | ||
| 10992 | else | ||
| 10993 | // Already on previous page. | ||
| 10994 | ✗ | break; | |
| 10995 | } | ||
| 10996 | ✗ | if (bufferImageGranularityConflict) | |
| 10997 | { | ||
| 10998 | ✗ | resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); | |
| 10999 | } | ||
| 11000 | } | ||
| 11001 | |||
| 11002 | ✗ | pAllocationRequest->itemsToMakeLostCount = 0; | |
| 11003 | ✗ | pAllocationRequest->sumItemSize = 0; | |
| 11004 | ✗ | size_t index1st = m_1stNullItemsBeginCount; | |
| 11005 | |||
| 11006 | ✗ | if (canMakeOtherLost) | |
| 11007 | { | ||
| 11008 | ✗ | while (index1st < suballocations1st.size() && | |
| 11009 | ✗ | resultOffset + allocSize + VMA_DEBUG_MARGIN > suballocations1st[index1st].offset) | |
| 11010 | { | ||
| 11011 | // Next colliding allocation at the beginning of 1st vector found. Try to make it lost. | ||
| 11012 | ✗ | const VmaSuballocation& suballoc = suballocations1st[index1st]; | |
| 11013 | ✗ | if (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE) | |
| 11014 | { | ||
| 11015 | // No problem. | ||
| 11016 | } | ||
| 11017 | else | ||
| 11018 | { | ||
| 11019 | ✗ | VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); | |
| 11020 | ✗ | if (suballoc.hAllocation->CanBecomeLost() && | |
| 11021 | ✗ | suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) | |
| 11022 | { | ||
| 11023 | ✗ | ++pAllocationRequest->itemsToMakeLostCount; | |
| 11024 | ✗ | pAllocationRequest->sumItemSize += suballoc.size; | |
| 11025 | } | ||
| 11026 | else | ||
| 11027 | { | ||
| 11028 | ✗ | return false; | |
| 11029 | } | ||
| 11030 | } | ||
| 11031 | ✗ | ++index1st; | |
| 11032 | } | ||
| 11033 | |||
| 11034 | // Check next suballocations for BufferImageGranularity conflicts. | ||
| 11035 | // If conflict exists, we must mark more allocations lost or fail. | ||
| 11036 | ✗ | if (bufferImageGranularity > 1) | |
| 11037 | { | ||
| 11038 | ✗ | while (index1st < suballocations1st.size()) | |
| 11039 | { | ||
| 11040 | ✗ | const VmaSuballocation& suballoc = suballocations1st[index1st]; | |
| 11041 | ✗ | if (VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity)) | |
| 11042 | { | ||
| 11043 | ✗ | if (suballoc.hAllocation != VK_NULL_HANDLE) | |
| 11044 | { | ||
| 11045 | // Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type). | ||
| 11046 | ✗ | if (suballoc.hAllocation->CanBecomeLost() && | |
| 11047 | ✗ | suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) | |
| 11048 | { | ||
| 11049 | ✗ | ++pAllocationRequest->itemsToMakeLostCount; | |
| 11050 | ✗ | pAllocationRequest->sumItemSize += suballoc.size; | |
| 11051 | } | ||
| 11052 | else | ||
| 11053 | { | ||
| 11054 | ✗ | return false; | |
| 11055 | } | ||
| 11056 | } | ||
| 11057 | } | ||
| 11058 | else | ||
| 11059 | { | ||
| 11060 | // Already on next page. | ||
| 11061 | ✗ | break; | |
| 11062 | } | ||
| 11063 | ✗ | ++index1st; | |
| 11064 | } | ||
| 11065 | } | ||
| 11066 | |||
| 11067 | // Special case: There is not enough room at the end for this allocation, even after making all from the 1st lost. | ||
| 11068 | ✗ | if (index1st == suballocations1st.size() && | |
| 11069 | ✗ | resultOffset + allocSize + VMA_DEBUG_MARGIN > size) | |
| 11070 | { | ||
| 11071 | // TODO: This is a known bug that it's not yet implemented and the allocation is failing. | ||
| 11072 | VMA_DEBUG_LOG("Unsupported special case in custom pool with linear allocation algorithm used as ring buffer with allocations that can be lost."); | ||
| 11073 | } | ||
| 11074 | } | ||
| 11075 | |||
| 11076 | // There is enough free space at the end after alignment. | ||
| 11077 | ✗ | if ((index1st == suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= size) || | |
| 11078 | ✗ | (index1st < suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= suballocations1st[index1st].offset)) | |
| 11079 | { | ||
| 11080 | // Check next suballocations for BufferImageGranularity conflicts. | ||
| 11081 | // If conflict exists, allocation cannot be made here. | ||
| 11082 | ✗ | if (bufferImageGranularity > 1) | |
| 11083 | { | ||
| 11084 | ✗ | for (size_t nextSuballocIndex = index1st; | |
| 11085 | ✗ | nextSuballocIndex < suballocations1st.size(); | |
| 11086 | nextSuballocIndex++) | ||
| 11087 | { | ||
| 11088 | ✗ | const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex]; | |
| 11089 | ✗ | if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) | |
| 11090 | { | ||
| 11091 | ✗ | if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) | |
| 11092 | { | ||
| 11093 | ✗ | return false; | |
| 11094 | } | ||
| 11095 | } | ||
| 11096 | else | ||
| 11097 | { | ||
| 11098 | // Already on next page. | ||
| 11099 | ✗ | break; | |
| 11100 | } | ||
| 11101 | } | ||
| 11102 | } | ||
| 11103 | |||
| 11104 | // All tests passed: Success. | ||
| 11105 | ✗ | pAllocationRequest->offset = resultOffset; | |
| 11106 | ✗ | pAllocationRequest->sumFreeSize = | |
| 11107 | ✗ | (index1st < suballocations1st.size() ? suballocations1st[index1st].offset : size) | |
| 11108 | ✗ | - resultBaseOffset | |
| 11109 | ✗ | - pAllocationRequest->sumItemSize; | |
| 11110 | ✗ | pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd; | |
| 11111 | // pAllocationRequest->item, customData unused. | ||
| 11112 | ✗ | return true; | |
| 11113 | } | ||
| 11114 | } | ||
| 11115 | |||
| 11116 | ✗ | return false; | |
| 11117 | } | ||
| 11118 | |||
| 11119 | bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost( | ||
| 11120 | uint32_t currentFrameIndex, | ||
| 11121 | uint32_t frameInUseCount, | ||
| 11122 | VmaAllocationRequest* pAllocationRequest) | ||
| 11123 | { | ||
| 11124 | ✗ | if (pAllocationRequest->itemsToMakeLostCount == 0) | |
| 11125 | { | ||
| 11126 | ✗ | return true; | |
| 11127 | } | ||
| 11128 | |||
| 11129 | ✗ | VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER); | |
| 11130 | |||
| 11131 | // We always start from 1st. | ||
| 11132 | ✗ | SuballocationVectorType* suballocations = &AccessSuballocations1st(); | |
| 11133 | ✗ | size_t index = m_1stNullItemsBeginCount; | |
| 11134 | ✗ | size_t madeLostCount = 0; | |
| 11135 | ✗ | while (madeLostCount < pAllocationRequest->itemsToMakeLostCount) | |
| 11136 | { | ||
| 11137 | ✗ | if (index == suballocations->size()) | |
| 11138 | { | ||
| 11139 | ✗ | index = 0; | |
| 11140 | // If we get to the end of 1st, we wrap around to beginning of 2nd of 1st. | ||
| 11141 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) | |
| 11142 | { | ||
| 11143 | ✗ | suballocations = &AccessSuballocations2nd(); | |
| 11144 | } | ||
| 11145 | // else: m_2ndVectorMode == SECOND_VECTOR_EMPTY: | ||
| 11146 | // suballocations continues pointing at AccessSuballocations1st(). | ||
| 11147 | ✗ | VMA_ASSERT(!suballocations->empty()); | |
| 11148 | } | ||
| 11149 | ✗ | VmaSuballocation& suballoc = (*suballocations)[index]; | |
| 11150 | ✗ | if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) | |
| 11151 | { | ||
| 11152 | ✗ | VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); | |
| 11153 | ✗ | VMA_ASSERT(suballoc.hAllocation->CanBecomeLost()); | |
| 11154 | ✗ | if (suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) | |
| 11155 | { | ||
| 11156 | ✗ | suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; | |
| 11157 | ✗ | suballoc.hAllocation = VK_NULL_HANDLE; | |
| 11158 | ✗ | m_SumFreeSize += suballoc.size; | |
| 11159 | ✗ | if (suballocations == &AccessSuballocations1st()) | |
| 11160 | { | ||
| 11161 | ✗ | ++m_1stNullItemsMiddleCount; | |
| 11162 | } | ||
| 11163 | else | ||
| 11164 | { | ||
| 11165 | ✗ | ++m_2ndNullItemsCount; | |
| 11166 | } | ||
| 11167 | ✗ | ++madeLostCount; | |
| 11168 | } | ||
| 11169 | else | ||
| 11170 | { | ||
| 11171 | ✗ | return false; | |
| 11172 | } | ||
| 11173 | } | ||
| 11174 | ✗ | ++index; | |
| 11175 | } | ||
| 11176 | |||
| 11177 | ✗ | CleanupAfterFree(); | |
| 11178 | //VMA_HEAVY_ASSERT(Validate()); // Already called by ClanupAfterFree(). | ||
| 11179 | |||
| 11180 | ✗ | return true; | |
| 11181 | } | ||
| 11182 | |||
| 11183 | uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) | ||
| 11184 | { | ||
| 11185 | ✗ | uint32_t lostAllocationCount = 0; | |
| 11186 | |||
| 11187 | ✗ | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 11188 | ✗ | for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) | |
| 11189 | { | ||
| 11190 | ✗ | VmaSuballocation& suballoc = suballocations1st[i]; | |
| 11191 | ✗ | if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && | |
| 11192 | ✗ | suballoc.hAllocation->CanBecomeLost() && | |
| 11193 | ✗ | suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) | |
| 11194 | { | ||
| 11195 | ✗ | suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; | |
| 11196 | ✗ | suballoc.hAllocation = VK_NULL_HANDLE; | |
| 11197 | ✗ | ++m_1stNullItemsMiddleCount; | |
| 11198 | ✗ | m_SumFreeSize += suballoc.size; | |
| 11199 | ✗ | ++lostAllocationCount; | |
| 11200 | } | ||
| 11201 | } | ||
| 11202 | |||
| 11203 | ✗ | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 11204 | ✗ | for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i) | |
| 11205 | { | ||
| 11206 | ✗ | VmaSuballocation& suballoc = suballocations2nd[i]; | |
| 11207 | ✗ | if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && | |
| 11208 | ✗ | suballoc.hAllocation->CanBecomeLost() && | |
| 11209 | ✗ | suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) | |
| 11210 | { | ||
| 11211 | ✗ | suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; | |
| 11212 | ✗ | suballoc.hAllocation = VK_NULL_HANDLE; | |
| 11213 | ✗ | ++m_2ndNullItemsCount; | |
| 11214 | ✗ | m_SumFreeSize += suballoc.size; | |
| 11215 | ✗ | ++lostAllocationCount; | |
| 11216 | } | ||
| 11217 | } | ||
| 11218 | |||
| 11219 | ✗ | if (lostAllocationCount) | |
| 11220 | { | ||
| 11221 | ✗ | CleanupAfterFree(); | |
| 11222 | } | ||
| 11223 | |||
| 11224 | ✗ | return lostAllocationCount; | |
| 11225 | } | ||
| 11226 | |||
| 11227 | VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData) | ||
| 11228 | { | ||
| 11229 | ✗ | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 11230 | ✗ | for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) | |
| 11231 | { | ||
| 11232 | ✗ | const VmaSuballocation& suballoc = suballocations1st[i]; | |
| 11233 | ✗ | if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) | |
| 11234 | { | ||
| 11235 | ✗ | if (!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) | |
| 11236 | { | ||
| 11237 | ✗ | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); | |
| 11238 | return VK_ERROR_VALIDATION_FAILED_EXT; | ||
| 11239 | } | ||
| 11240 | ✗ | if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) | |
| 11241 | { | ||
| 11242 | ✗ | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); | |
| 11243 | return VK_ERROR_VALIDATION_FAILED_EXT; | ||
| 11244 | } | ||
| 11245 | } | ||
| 11246 | } | ||
| 11247 | |||
| 11248 | ✗ | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 11249 | ✗ | for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i) | |
| 11250 | { | ||
| 11251 | ✗ | const VmaSuballocation& suballoc = suballocations2nd[i]; | |
| 11252 | ✗ | if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) | |
| 11253 | { | ||
| 11254 | ✗ | if (!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) | |
| 11255 | { | ||
| 11256 | ✗ | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); | |
| 11257 | return VK_ERROR_VALIDATION_FAILED_EXT; | ||
| 11258 | } | ||
| 11259 | ✗ | if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) | |
| 11260 | { | ||
| 11261 | ✗ | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); | |
| 11262 | return VK_ERROR_VALIDATION_FAILED_EXT; | ||
| 11263 | } | ||
| 11264 | } | ||
| 11265 | } | ||
| 11266 | |||
| 11267 | ✗ | return VK_SUCCESS; | |
| 11268 | } | ||
| 11269 | |||
| 11270 | void VmaBlockMetadata_Linear::Alloc( | ||
| 11271 | const VmaAllocationRequest& request, | ||
| 11272 | VmaSuballocationType type, | ||
| 11273 | VkDeviceSize allocSize, | ||
| 11274 | VmaAllocation hAllocation) | ||
| 11275 | { | ||
| 11276 | ✗ | const VmaSuballocation newSuballoc = { request.offset, allocSize, hAllocation, type }; | |
| 11277 | |||
| 11278 | ✗ | switch (request.type) | |
| 11279 | { | ||
| 11280 | ✗ | case VmaAllocationRequestType::UpperAddress: | |
| 11281 | { | ||
| 11282 | ✗ | VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER && | |
| 11283 | "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer."); | ||
| 11284 | ✗ | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 11285 | ✗ | suballocations2nd.push_back(newSuballoc); | |
| 11286 | ✗ | m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK; | |
| 11287 | } | ||
| 11288 | ✗ | break; | |
| 11289 | ✗ | case VmaAllocationRequestType::EndOf1st: | |
| 11290 | { | ||
| 11291 | ✗ | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 11292 | |||
| 11293 | ✗ | VMA_ASSERT(suballocations1st.empty() || | |
| 11294 | request.offset >= suballocations1st.back().offset + suballocations1st.back().size); | ||
| 11295 | // Check if it fits before the end of the block. | ||
| 11296 | ✗ | VMA_ASSERT(request.offset + allocSize <= GetSize()); | |
| 11297 | |||
| 11298 | ✗ | suballocations1st.push_back(newSuballoc); | |
| 11299 | } | ||
| 11300 | ✗ | break; | |
| 11301 | ✗ | case VmaAllocationRequestType::EndOf2nd: | |
| 11302 | { | ||
| 11303 | ✗ | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 11304 | // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector. | ||
| 11305 | ✗ | VMA_ASSERT(!suballocations1st.empty() && | |
| 11306 | request.offset + allocSize <= suballocations1st[m_1stNullItemsBeginCount].offset); | ||
| 11307 | ✗ | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 11308 | |||
| 11309 | ✗ | switch (m_2ndVectorMode) | |
| 11310 | { | ||
| 11311 | ✗ | case SECOND_VECTOR_EMPTY: | |
| 11312 | // First allocation from second part ring buffer. | ||
| 11313 | ✗ | VMA_ASSERT(suballocations2nd.empty()); | |
| 11314 | ✗ | m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER; | |
| 11315 | ✗ | break; | |
| 11316 | ✗ | case SECOND_VECTOR_RING_BUFFER: | |
| 11317 | // 2-part ring buffer is already started. | ||
| 11318 | ✗ | VMA_ASSERT(!suballocations2nd.empty()); | |
| 11319 | ✗ | break; | |
| 11320 | ✗ | case SECOND_VECTOR_DOUBLE_STACK: | |
| 11321 | ✗ | VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack."); | |
| 11322 | break; | ||
| 11323 | ✗ | default: | |
| 11324 | ✗ | VMA_ASSERT(0); | |
| 11325 | } | ||
| 11326 | |||
| 11327 | ✗ | suballocations2nd.push_back(newSuballoc); | |
| 11328 | } | ||
| 11329 | ✗ | break; | |
| 11330 | ✗ | default: | |
| 11331 | ✗ | VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR."); | |
| 11332 | } | ||
| 11333 | |||
| 11334 | ✗ | m_SumFreeSize -= newSuballoc.size; | |
| 11335 | ✗ | } | |
| 11336 | |||
| 11337 | void VmaBlockMetadata_Linear::Free(const VmaAllocation allocation) | ||
| 11338 | { | ||
| 11339 | ✗ | FreeAtOffset(allocation->GetOffset()); | |
| 11340 | ✗ | } | |
| 11341 | |||
| 11342 | void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset) | ||
| 11343 | { | ||
| 11344 | ✗ | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 11345 | ✗ | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 11346 | |||
| 11347 | ✗ | if (!suballocations1st.empty()) | |
| 11348 | { | ||
| 11349 | // First allocation: Mark it as next empty at the beginning. | ||
| 11350 | ✗ | VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; | |
| 11351 | ✗ | if (firstSuballoc.offset == offset) | |
| 11352 | { | ||
| 11353 | ✗ | firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; | |
| 11354 | ✗ | firstSuballoc.hAllocation = VK_NULL_HANDLE; | |
| 11355 | ✗ | m_SumFreeSize += firstSuballoc.size; | |
| 11356 | ✗ | ++m_1stNullItemsBeginCount; | |
| 11357 | ✗ | CleanupAfterFree(); | |
| 11358 | ✗ | return; | |
| 11359 | } | ||
| 11360 | } | ||
| 11361 | |||
| 11362 | // Last allocation in 2-part ring buffer or top of upper stack (same logic). | ||
| 11363 | ✗ | if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER || | |
| 11364 | ✗ | m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) | |
| 11365 | { | ||
| 11366 | ✗ | VmaSuballocation& lastSuballoc = suballocations2nd.back(); | |
| 11367 | ✗ | if (lastSuballoc.offset == offset) | |
| 11368 | { | ||
| 11369 | ✗ | m_SumFreeSize += lastSuballoc.size; | |
| 11370 | ✗ | suballocations2nd.pop_back(); | |
| 11371 | ✗ | CleanupAfterFree(); | |
| 11372 | ✗ | return; | |
| 11373 | } | ||
| 11374 | ✗ | } | |
| 11375 | // Last allocation in 1st vector. | ||
| 11376 | ✗ | else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY) | |
| 11377 | { | ||
| 11378 | ✗ | VmaSuballocation& lastSuballoc = suballocations1st.back(); | |
| 11379 | ✗ | if (lastSuballoc.offset == offset) | |
| 11380 | { | ||
| 11381 | ✗ | m_SumFreeSize += lastSuballoc.size; | |
| 11382 | ✗ | suballocations1st.pop_back(); | |
| 11383 | ✗ | CleanupAfterFree(); | |
| 11384 | ✗ | return; | |
| 11385 | } | ||
| 11386 | } | ||
| 11387 | |||
| 11388 | // Item from the middle of 1st vector. | ||
| 11389 | { | ||
| 11390 | VmaSuballocation refSuballoc; | ||
| 11391 | ✗ | refSuballoc.offset = offset; | |
| 11392 | // Rest of members stays uninitialized intentionally for better performance. | ||
| 11393 | ✗ | SuballocationVectorType::iterator it = VmaBinaryFindSorted( | |
| 11394 | ✗ | suballocations1st.begin() + m_1stNullItemsBeginCount, | |
| 11395 | ✗ | suballocations1st.end(), | |
| 11396 | refSuballoc, | ||
| 11397 | ✗ | VmaSuballocationOffsetLess()); | |
| 11398 | ✗ | if (it != suballocations1st.end()) | |
| 11399 | { | ||
| 11400 | ✗ | it->type = VMA_SUBALLOCATION_TYPE_FREE; | |
| 11401 | ✗ | it->hAllocation = VK_NULL_HANDLE; | |
| 11402 | ✗ | ++m_1stNullItemsMiddleCount; | |
| 11403 | ✗ | m_SumFreeSize += it->size; | |
| 11404 | ✗ | CleanupAfterFree(); | |
| 11405 | ✗ | return; | |
| 11406 | } | ||
| 11407 | } | ||
| 11408 | |||
| 11409 | ✗ | if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) | |
| 11410 | { | ||
| 11411 | // Item from the middle of 2nd vector. | ||
| 11412 | VmaSuballocation refSuballoc; | ||
| 11413 | ✗ | refSuballoc.offset = offset; | |
| 11414 | // Rest of members stays uninitialized intentionally for better performance. | ||
| 11415 | ✗ | SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? | |
| 11416 | ✗ | VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : | |
| 11417 | ✗ | VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); | |
| 11418 | ✗ | if (it != suballocations2nd.end()) | |
| 11419 | { | ||
| 11420 | ✗ | it->type = VMA_SUBALLOCATION_TYPE_FREE; | |
| 11421 | ✗ | it->hAllocation = VK_NULL_HANDLE; | |
| 11422 | ✗ | ++m_2ndNullItemsCount; | |
| 11423 | ✗ | m_SumFreeSize += it->size; | |
| 11424 | ✗ | CleanupAfterFree(); | |
| 11425 | ✗ | return; | |
| 11426 | } | ||
| 11427 | } | ||
| 11428 | |||
| 11429 | ✗ | VMA_ASSERT(0 && "Allocation to free not found in linear allocator!"); | |
| 11430 | } | ||
| 11431 | |||
| 11432 | bool VmaBlockMetadata_Linear::ShouldCompact1st() const | ||
| 11433 | { | ||
| 11434 | ✗ | const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; | |
| 11435 | ✗ | const size_t suballocCount = AccessSuballocations1st().size(); | |
| 11436 | ✗ | return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3; | |
| 11437 | } | ||
| 11438 | |||
| 11439 | void VmaBlockMetadata_Linear::CleanupAfterFree() | ||
| 11440 | { | ||
| 11441 | ✗ | SuballocationVectorType& suballocations1st = AccessSuballocations1st(); | |
| 11442 | ✗ | SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); | |
| 11443 | |||
| 11444 | ✗ | if (IsEmpty()) | |
| 11445 | { | ||
| 11446 | ✗ | suballocations1st.clear(); | |
| 11447 | ✗ | suballocations2nd.clear(); | |
| 11448 | ✗ | m_1stNullItemsBeginCount = 0; | |
| 11449 | ✗ | m_1stNullItemsMiddleCount = 0; | |
| 11450 | ✗ | m_2ndNullItemsCount = 0; | |
| 11451 | ✗ | m_2ndVectorMode = SECOND_VECTOR_EMPTY; | |
| 11452 | } | ||
| 11453 | else | ||
| 11454 | { | ||
| 11455 | ✗ | const size_t suballoc1stCount = suballocations1st.size(); | |
| 11456 | ✗ | const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; | |
| 11457 | ✗ | VMA_ASSERT(nullItem1stCount <= suballoc1stCount); | |
| 11458 | |||
| 11459 | // Find more null items at the beginning of 1st vector. | ||
| 11460 | ✗ | while (m_1stNullItemsBeginCount < suballoc1stCount && | |
| 11461 | ✗ | suballocations1st[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) | |
| 11462 | { | ||
| 11463 | ✗ | ++m_1stNullItemsBeginCount; | |
| 11464 | ✗ | --m_1stNullItemsMiddleCount; | |
| 11465 | } | ||
| 11466 | |||
| 11467 | // Find more null items at the end of 1st vector. | ||
| 11468 | ✗ | while (m_1stNullItemsMiddleCount > 0 && | |
| 11469 | ✗ | suballocations1st.back().hAllocation == VK_NULL_HANDLE) | |
| 11470 | { | ||
| 11471 | ✗ | --m_1stNullItemsMiddleCount; | |
| 11472 | ✗ | suballocations1st.pop_back(); | |
| 11473 | } | ||
| 11474 | |||
| 11475 | // Find more null items at the end of 2nd vector. | ||
| 11476 | ✗ | while (m_2ndNullItemsCount > 0 && | |
| 11477 | ✗ | suballocations2nd.back().hAllocation == VK_NULL_HANDLE) | |
| 11478 | { | ||
| 11479 | ✗ | --m_2ndNullItemsCount; | |
| 11480 | ✗ | suballocations2nd.pop_back(); | |
| 11481 | } | ||
| 11482 | |||
| 11483 | // Find more null items at the beginning of 2nd vector. | ||
| 11484 | ✗ | while (m_2ndNullItemsCount > 0 && | |
| 11485 | ✗ | suballocations2nd[0].hAllocation == VK_NULL_HANDLE) | |
| 11486 | { | ||
| 11487 | ✗ | --m_2ndNullItemsCount; | |
| 11488 | ✗ | VmaVectorRemove(suballocations2nd, 0); | |
| 11489 | } | ||
| 11490 | |||
| 11491 | ✗ | if (ShouldCompact1st()) | |
| 11492 | { | ||
| 11493 | ✗ | const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount; | |
| 11494 | ✗ | size_t srcIndex = m_1stNullItemsBeginCount; | |
| 11495 | ✗ | for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) | |
| 11496 | { | ||
| 11497 | ✗ | while (suballocations1st[srcIndex].hAllocation == VK_NULL_HANDLE) | |
| 11498 | { | ||
| 11499 | ✗ | ++srcIndex; | |
| 11500 | } | ||
| 11501 | ✗ | if (dstIndex != srcIndex) | |
| 11502 | { | ||
| 11503 | ✗ | suballocations1st[dstIndex] = suballocations1st[srcIndex]; | |
| 11504 | } | ||
| 11505 | ✗ | ++srcIndex; | |
| 11506 | } | ||
| 11507 | ✗ | suballocations1st.resize(nonNullItemCount); | |
| 11508 | ✗ | m_1stNullItemsBeginCount = 0; | |
| 11509 | ✗ | m_1stNullItemsMiddleCount = 0; | |
| 11510 | } | ||
| 11511 | |||
| 11512 | // 2nd vector became empty. | ||
| 11513 | ✗ | if (suballocations2nd.empty()) | |
| 11514 | { | ||
| 11515 | ✗ | m_2ndVectorMode = SECOND_VECTOR_EMPTY; | |
| 11516 | } | ||
| 11517 | |||
| 11518 | // 1st vector became empty. | ||
| 11519 | ✗ | if (suballocations1st.size() - m_1stNullItemsBeginCount == 0) | |
| 11520 | { | ||
| 11521 | ✗ | suballocations1st.clear(); | |
| 11522 | ✗ | m_1stNullItemsBeginCount = 0; | |
| 11523 | |||
| 11524 | ✗ | if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) | |
| 11525 | { | ||
| 11526 | // Swap 1st with 2nd. Now 2nd is empty. | ||
| 11527 | ✗ | m_2ndVectorMode = SECOND_VECTOR_EMPTY; | |
| 11528 | ✗ | m_1stNullItemsMiddleCount = m_2ndNullItemsCount; | |
| 11529 | ✗ | while (m_1stNullItemsBeginCount < suballocations2nd.size() && | |
| 11530 | ✗ | suballocations2nd[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) | |
| 11531 | { | ||
| 11532 | ✗ | ++m_1stNullItemsBeginCount; | |
| 11533 | ✗ | --m_1stNullItemsMiddleCount; | |
| 11534 | } | ||
| 11535 | ✗ | m_2ndNullItemsCount = 0; | |
| 11536 | ✗ | m_1stVectorIndex ^= 1; | |
| 11537 | } | ||
| 11538 | } | ||
| 11539 | } | ||
| 11540 | |||
| 11541 | VMA_HEAVY_ASSERT(Validate()); | ||
| 11542 | ✗ | } | |
| 11543 | |||
| 11544 | |||
| 11545 | //////////////////////////////////////////////////////////////////////////////// | ||
| 11546 | // class VmaBlockMetadata_Buddy | ||
| 11547 | |||
| 11548 | VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(VmaAllocator hAllocator) : | ||
| 11549 | VmaBlockMetadata(hAllocator), | ||
| 11550 | ✗ | m_Root(VMA_NULL), | |
| 11551 | ✗ | m_AllocationCount(0), | |
| 11552 | ✗ | m_FreeCount(1), | |
| 11553 | ✗ | m_SumFreeSize(0) | |
| 11554 | { | ||
| 11555 | ✗ | memset(m_FreeList, 0, sizeof(m_FreeList)); | |
| 11556 | ✗ | } | |
| 11557 | |||
| 11558 | VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy() | ||
| 11559 | { | ||
| 11560 | ✗ | DeleteNode(m_Root); | |
| 11561 | ✗ | } | |
| 11562 | |||
| 11563 | void VmaBlockMetadata_Buddy::Init(VkDeviceSize size) | ||
| 11564 | { | ||
| 11565 | ✗ | VmaBlockMetadata::Init(size); | |
| 11566 | |||
| 11567 | ✗ | m_UsableSize = VmaPrevPow2(size); | |
| 11568 | ✗ | m_SumFreeSize = m_UsableSize; | |
| 11569 | |||
| 11570 | // Calculate m_LevelCount. | ||
| 11571 | ✗ | m_LevelCount = 1; | |
| 11572 | ✗ | while (m_LevelCount < MAX_LEVELS && | |
| 11573 | ✗ | LevelToNodeSize(m_LevelCount) >= MIN_NODE_SIZE) | |
| 11574 | { | ||
| 11575 | ✗ | ++m_LevelCount; | |
| 11576 | } | ||
| 11577 | |||
| 11578 | ✗ | Node* rootNode = vma_new(GetAllocationCallbacks(), Node)(); | |
| 11579 | ✗ | rootNode->offset = 0; | |
| 11580 | ✗ | rootNode->type = Node::TYPE_FREE; | |
| 11581 | ✗ | rootNode->parent = VMA_NULL; | |
| 11582 | ✗ | rootNode->buddy = VMA_NULL; | |
| 11583 | |||
| 11584 | ✗ | m_Root = rootNode; | |
| 11585 | ✗ | AddToFreeListFront(0, rootNode); | |
| 11586 | ✗ | } | |
| 11587 | |||
| 11588 | bool VmaBlockMetadata_Buddy::Validate() const | ||
| 11589 | { | ||
| 11590 | // Validate tree. | ||
| 11591 | ✗ | ValidationContext ctx; | |
| 11592 | ✗ | if (!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0))) | |
| 11593 | { | ||
| 11594 | ✗ | VMA_VALIDATE(false && "ValidateNode failed."); | |
| 11595 | } | ||
| 11596 | ✗ | VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount); | |
| 11597 | ✗ | VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize); | |
| 11598 | |||
| 11599 | // Validate free node lists. | ||
| 11600 | ✗ | for (uint32_t level = 0; level < m_LevelCount; ++level) | |
| 11601 | { | ||
| 11602 | ✗ | VMA_VALIDATE(m_FreeList[level].front == VMA_NULL || | |
| 11603 | m_FreeList[level].front->free.prev == VMA_NULL); | ||
| 11604 | |||
| 11605 | ✗ | for (Node* node = m_FreeList[level].front; | |
| 11606 | ✗ | node != VMA_NULL; | |
| 11607 | ✗ | node = node->free.next) | |
| 11608 | { | ||
| 11609 | ✗ | VMA_VALIDATE(node->type == Node::TYPE_FREE); | |
| 11610 | |||
| 11611 | ✗ | if (node->free.next == VMA_NULL) | |
| 11612 | { | ||
| 11613 | ✗ | VMA_VALIDATE(m_FreeList[level].back == node); | |
| 11614 | } | ||
| 11615 | else | ||
| 11616 | { | ||
| 11617 | ✗ | VMA_VALIDATE(node->free.next->free.prev == node); | |
| 11618 | } | ||
| 11619 | } | ||
| 11620 | } | ||
| 11621 | |||
| 11622 | // Validate that free lists ar higher levels are empty. | ||
| 11623 | ✗ | for (uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level) | |
| 11624 | { | ||
| 11625 | ✗ | VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL); | |
| 11626 | } | ||
| 11627 | |||
| 11628 | ✗ | return true; | |
| 11629 | } | ||
| 11630 | |||
| 11631 | VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const | ||
| 11632 | { | ||
| 11633 | ✗ | for (uint32_t level = 0; level < m_LevelCount; ++level) | |
| 11634 | { | ||
| 11635 | ✗ | if (m_FreeList[level].front != VMA_NULL) | |
| 11636 | { | ||
| 11637 | ✗ | return LevelToNodeSize(level); | |
| 11638 | } | ||
| 11639 | } | ||
| 11640 | ✗ | return 0; | |
| 11641 | } | ||
| 11642 | |||
| 11643 | void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const | ||
| 11644 | { | ||
| 11645 | ✗ | const VkDeviceSize unusableSize = GetUnusableSize(); | |
| 11646 | |||
| 11647 | ✗ | outInfo.blockCount = 1; | |
| 11648 | |||
| 11649 | ✗ | outInfo.allocationCount = outInfo.unusedRangeCount = 0; | |
| 11650 | ✗ | outInfo.usedBytes = outInfo.unusedBytes = 0; | |
| 11651 | |||
| 11652 | ✗ | outInfo.allocationSizeMax = outInfo.unusedRangeSizeMax = 0; | |
| 11653 | ✗ | outInfo.allocationSizeMin = outInfo.unusedRangeSizeMin = UINT64_MAX; | |
| 11654 | ✗ | outInfo.allocationSizeAvg = outInfo.unusedRangeSizeAvg = 0; // Unused. | |
| 11655 | |||
| 11656 | ✗ | CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0)); | |
| 11657 | |||
| 11658 | ✗ | if (unusableSize > 0) | |
| 11659 | { | ||
| 11660 | ✗ | ++outInfo.unusedRangeCount; | |
| 11661 | ✗ | outInfo.unusedBytes += unusableSize; | |
| 11662 | ✗ | outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusableSize); | |
| 11663 | ✗ | outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusableSize); | |
| 11664 | } | ||
| 11665 | ✗ | } | |
| 11666 | |||
| 11667 | void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const | ||
| 11668 | { | ||
| 11669 | ✗ | const VkDeviceSize unusableSize = GetUnusableSize(); | |
| 11670 | |||
| 11671 | ✗ | inoutStats.size += GetSize(); | |
| 11672 | ✗ | inoutStats.unusedSize += m_SumFreeSize + unusableSize; | |
| 11673 | ✗ | inoutStats.allocationCount += m_AllocationCount; | |
| 11674 | ✗ | inoutStats.unusedRangeCount += m_FreeCount; | |
| 11675 | ✗ | inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); | |
| 11676 | |||
| 11677 | ✗ | if (unusableSize > 0) | |
| 11678 | { | ||
| 11679 | ✗ | ++inoutStats.unusedRangeCount; | |
| 11680 | // Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations. | ||
| 11681 | } | ||
| 11682 | ✗ | } | |
| 11683 | |||
| 11684 | #if VMA_STATS_STRING_ENABLED | ||
| 11685 | |||
| 11686 | void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json) const | ||
| 11687 | { | ||
| 11688 | // TODO optimize | ||
| 11689 | VmaStatInfo stat; | ||
| 11690 | ✗ | CalcAllocationStatInfo(stat); | |
| 11691 | |||
| 11692 | ✗ | PrintDetailedMap_Begin( | |
| 11693 | json, | ||
| 11694 | stat.unusedBytes, | ||
| 11695 | ✗ | stat.allocationCount, | |
| 11696 | ✗ | stat.unusedRangeCount); | |
| 11697 | |||
| 11698 | ✗ | PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0)); | |
| 11699 | |||
| 11700 | ✗ | const VkDeviceSize unusableSize = GetUnusableSize(); | |
| 11701 | ✗ | if (unusableSize > 0) | |
| 11702 | { | ||
| 11703 | ✗ | PrintDetailedMap_UnusedRange(json, | |
| 11704 | ✗ | m_UsableSize, // offset | |
| 11705 | unusableSize); // size | ||
| 11706 | } | ||
| 11707 | |||
| 11708 | ✗ | PrintDetailedMap_End(json); | |
| 11709 | ✗ | } | |
| 11710 | |||
| 11711 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 11712 | |||
| 11713 | bool VmaBlockMetadata_Buddy::CreateAllocationRequest( | ||
| 11714 | uint32_t currentFrameIndex, | ||
| 11715 | uint32_t frameInUseCount, | ||
| 11716 | VkDeviceSize bufferImageGranularity, | ||
| 11717 | VkDeviceSize allocSize, | ||
| 11718 | VkDeviceSize allocAlignment, | ||
| 11719 | bool upperAddress, | ||
| 11720 | VmaSuballocationType allocType, | ||
| 11721 | bool canMakeOtherLost, | ||
| 11722 | uint32_t strategy, | ||
| 11723 | VmaAllocationRequest* pAllocationRequest) | ||
| 11724 | { | ||
| 11725 | ✗ | VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); | |
| 11726 | |||
| 11727 | // Simple way to respect bufferImageGranularity. May be optimized some day. | ||
| 11728 | // Whenever it might be an OPTIMAL image... | ||
| 11729 | ✗ | if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || | |
| 11730 | ✗ | allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || | |
| 11731 | allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) | ||
| 11732 | { | ||
| 11733 | ✗ | allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity); | |
| 11734 | ✗ | allocSize = VMA_MAX(allocSize, bufferImageGranularity); | |
| 11735 | } | ||
| 11736 | |||
| 11737 | ✗ | if (allocSize > m_UsableSize) | |
| 11738 | { | ||
| 11739 | ✗ | return false; | |
| 11740 | } | ||
| 11741 | |||
| 11742 | ✗ | const uint32_t targetLevel = AllocSizeToLevel(allocSize); | |
| 11743 | ✗ | for (uint32_t level = targetLevel + 1; level--; ) | |
| 11744 | { | ||
| 11745 | ✗ | for (Node* freeNode = m_FreeList[level].front; | |
| 11746 | ✗ | freeNode != VMA_NULL; | |
| 11747 | ✗ | freeNode = freeNode->free.next) | |
| 11748 | { | ||
| 11749 | ✗ | if (freeNode->offset % allocAlignment == 0) | |
| 11750 | { | ||
| 11751 | ✗ | pAllocationRequest->type = VmaAllocationRequestType::Normal; | |
| 11752 | ✗ | pAllocationRequest->offset = freeNode->offset; | |
| 11753 | ✗ | pAllocationRequest->sumFreeSize = LevelToNodeSize(level); | |
| 11754 | ✗ | pAllocationRequest->sumItemSize = 0; | |
| 11755 | ✗ | pAllocationRequest->itemsToMakeLostCount = 0; | |
| 11756 | ✗ | pAllocationRequest->customData = (void*)(uintptr_t)level; | |
| 11757 | ✗ | return true; | |
| 11758 | } | ||
| 11759 | } | ||
| 11760 | } | ||
| 11761 | |||
| 11762 | ✗ | return false; | |
| 11763 | } | ||
| 11764 | |||
| 11765 | bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost( | ||
| 11766 | uint32_t currentFrameIndex, | ||
| 11767 | uint32_t frameInUseCount, | ||
| 11768 | VmaAllocationRequest* pAllocationRequest) | ||
| 11769 | { | ||
| 11770 | /* | ||
| 11771 | Lost allocations are not supported in buddy allocator at the moment. | ||
| 11772 | Support might be added in the future. | ||
| 11773 | */ | ||
| 11774 | ✗ | return pAllocationRequest->itemsToMakeLostCount == 0; | |
| 11775 | } | ||
| 11776 | |||
| 11777 | uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) | ||
| 11778 | { | ||
| 11779 | /* | ||
| 11780 | Lost allocations are not supported in buddy allocator at the moment. | ||
| 11781 | Support might be added in the future. | ||
| 11782 | */ | ||
| 11783 | ✗ | return 0; | |
| 11784 | } | ||
| 11785 | |||
| 11786 | void VmaBlockMetadata_Buddy::Alloc( | ||
| 11787 | const VmaAllocationRequest& request, | ||
| 11788 | VmaSuballocationType type, | ||
| 11789 | VkDeviceSize allocSize, | ||
| 11790 | VmaAllocation hAllocation) | ||
| 11791 | { | ||
| 11792 | ✗ | VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); | |
| 11793 | |||
| 11794 | ✗ | const uint32_t targetLevel = AllocSizeToLevel(allocSize); | |
| 11795 | ✗ | uint32_t currLevel = (uint32_t)(uintptr_t)request.customData; | |
| 11796 | |||
| 11797 | ✗ | Node* currNode = m_FreeList[currLevel].front; | |
| 11798 | ✗ | VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); | |
| 11799 | ✗ | while (currNode->offset != request.offset) | |
| 11800 | { | ||
| 11801 | ✗ | currNode = currNode->free.next; | |
| 11802 | ✗ | VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); | |
| 11803 | } | ||
| 11804 | |||
| 11805 | // Go down, splitting free nodes. | ||
| 11806 | ✗ | while (currLevel < targetLevel) | |
| 11807 | { | ||
| 11808 | // currNode is already first free node at currLevel. | ||
| 11809 | // Remove it from list of free nodes at this currLevel. | ||
| 11810 | ✗ | RemoveFromFreeList(currLevel, currNode); | |
| 11811 | |||
| 11812 | ✗ | const uint32_t childrenLevel = currLevel + 1; | |
| 11813 | |||
| 11814 | // Create two free sub-nodes. | ||
| 11815 | ✗ | Node* leftChild = vma_new(GetAllocationCallbacks(), Node)(); | |
| 11816 | ✗ | Node* rightChild = vma_new(GetAllocationCallbacks(), Node)(); | |
| 11817 | |||
| 11818 | ✗ | leftChild->offset = currNode->offset; | |
| 11819 | ✗ | leftChild->type = Node::TYPE_FREE; | |
| 11820 | ✗ | leftChild->parent = currNode; | |
| 11821 | ✗ | leftChild->buddy = rightChild; | |
| 11822 | |||
| 11823 | ✗ | rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel); | |
| 11824 | ✗ | rightChild->type = Node::TYPE_FREE; | |
| 11825 | ✗ | rightChild->parent = currNode; | |
| 11826 | ✗ | rightChild->buddy = leftChild; | |
| 11827 | |||
| 11828 | // Convert current currNode to split type. | ||
| 11829 | ✗ | currNode->type = Node::TYPE_SPLIT; | |
| 11830 | ✗ | currNode->split.leftChild = leftChild; | |
| 11831 | |||
| 11832 | // Add child nodes to free list. Order is important! | ||
| 11833 | ✗ | AddToFreeListFront(childrenLevel, rightChild); | |
| 11834 | ✗ | AddToFreeListFront(childrenLevel, leftChild); | |
| 11835 | |||
| 11836 | ✗ | ++m_FreeCount; | |
| 11837 | //m_SumFreeSize -= LevelToNodeSize(currLevel) % 2; // Useful only when level node sizes can be non power of 2. | ||
| 11838 | ✗ | ++currLevel; | |
| 11839 | ✗ | currNode = m_FreeList[currLevel].front; | |
| 11840 | |||
| 11841 | /* | ||
| 11842 | We can be sure that currNode, as left child of node previously split, | ||
| 11843 | also fullfills the alignment requirement. | ||
| 11844 | */ | ||
| 11845 | } | ||
| 11846 | |||
| 11847 | // Remove from free list. | ||
| 11848 | ✗ | VMA_ASSERT(currLevel == targetLevel && | |
| 11849 | currNode != VMA_NULL && | ||
| 11850 | currNode->type == Node::TYPE_FREE); | ||
| 11851 | ✗ | RemoveFromFreeList(currLevel, currNode); | |
| 11852 | |||
| 11853 | // Convert to allocation node. | ||
| 11854 | ✗ | currNode->type = Node::TYPE_ALLOCATION; | |
| 11855 | ✗ | currNode->allocation.alloc = hAllocation; | |
| 11856 | |||
| 11857 | ✗ | ++m_AllocationCount; | |
| 11858 | ✗ | --m_FreeCount; | |
| 11859 | ✗ | m_SumFreeSize -= allocSize; | |
| 11860 | ✗ | } | |
| 11861 | |||
| 11862 | void VmaBlockMetadata_Buddy::DeleteNode(Node* node) | ||
| 11863 | { | ||
| 11864 | ✗ | if (node->type == Node::TYPE_SPLIT) | |
| 11865 | { | ||
| 11866 | ✗ | DeleteNode(node->split.leftChild->buddy); | |
| 11867 | ✗ | DeleteNode(node->split.leftChild); | |
| 11868 | } | ||
| 11869 | |||
| 11870 | ✗ | vma_delete(GetAllocationCallbacks(), node); | |
| 11871 | ✗ | } | |
| 11872 | |||
| 11873 | bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const | ||
| 11874 | { | ||
| 11875 | ✗ | VMA_VALIDATE(level < m_LevelCount); | |
| 11876 | ✗ | VMA_VALIDATE(curr->parent == parent); | |
| 11877 | ✗ | VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL)); | |
| 11878 | ✗ | VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr); | |
| 11879 | ✗ | switch (curr->type) | |
| 11880 | { | ||
| 11881 | ✗ | case Node::TYPE_FREE: | |
| 11882 | // curr->free.prev, next are validated separately. | ||
| 11883 | ✗ | ctx.calculatedSumFreeSize += levelNodeSize; | |
| 11884 | ✗ | ++ctx.calculatedFreeCount; | |
| 11885 | ✗ | break; | |
| 11886 | ✗ | case Node::TYPE_ALLOCATION: | |
| 11887 | ✗ | ++ctx.calculatedAllocationCount; | |
| 11888 | ✗ | ctx.calculatedSumFreeSize += levelNodeSize - curr->allocation.alloc->GetSize(); | |
| 11889 | ✗ | VMA_VALIDATE(curr->allocation.alloc != VK_NULL_HANDLE); | |
| 11890 | ✗ | break; | |
| 11891 | ✗ | case Node::TYPE_SPLIT: | |
| 11892 | { | ||
| 11893 | ✗ | const uint32_t childrenLevel = level + 1; | |
| 11894 | ✗ | const VkDeviceSize childrenLevelNodeSize = levelNodeSize / 2; | |
| 11895 | ✗ | const Node* const leftChild = curr->split.leftChild; | |
| 11896 | ✗ | VMA_VALIDATE(leftChild != VMA_NULL); | |
| 11897 | ✗ | VMA_VALIDATE(leftChild->offset == curr->offset); | |
| 11898 | ✗ | if (!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize)) | |
| 11899 | { | ||
| 11900 | ✗ | VMA_VALIDATE(false && "ValidateNode for left child failed."); | |
| 11901 | } | ||
| 11902 | ✗ | const Node* const rightChild = leftChild->buddy; | |
| 11903 | ✗ | VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize); | |
| 11904 | ✗ | if (!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize)) | |
| 11905 | { | ||
| 11906 | ✗ | VMA_VALIDATE(false && "ValidateNode for right child failed."); | |
| 11907 | } | ||
| 11908 | } | ||
| 11909 | ✗ | break; | |
| 11910 | ✗ | default: | |
| 11911 | ✗ | return false; | |
| 11912 | } | ||
| 11913 | |||
| 11914 | ✗ | return true; | |
| 11915 | } | ||
| 11916 | |||
| 11917 | uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const | ||
| 11918 | { | ||
| 11919 | // I know this could be optimized somehow e.g. by using std::log2p1 from C++20. | ||
| 11920 | ✗ | uint32_t level = 0; | |
| 11921 | ✗ | VkDeviceSize currLevelNodeSize = m_UsableSize; | |
| 11922 | ✗ | VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1; | |
| 11923 | ✗ | while (allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount) | |
| 11924 | { | ||
| 11925 | ✗ | ++level; | |
| 11926 | ✗ | currLevelNodeSize = nextLevelNodeSize; | |
| 11927 | ✗ | nextLevelNodeSize = currLevelNodeSize >> 1; | |
| 11928 | } | ||
| 11929 | ✗ | return level; | |
| 11930 | } | ||
| 11931 | |||
| 11932 | void VmaBlockMetadata_Buddy::FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset) | ||
| 11933 | { | ||
| 11934 | // Find node and level. | ||
| 11935 | ✗ | Node* node = m_Root; | |
| 11936 | ✗ | VkDeviceSize nodeOffset = 0; | |
| 11937 | ✗ | uint32_t level = 0; | |
| 11938 | ✗ | VkDeviceSize levelNodeSize = LevelToNodeSize(0); | |
| 11939 | ✗ | while (node->type == Node::TYPE_SPLIT) | |
| 11940 | { | ||
| 11941 | ✗ | const VkDeviceSize nextLevelSize = levelNodeSize >> 1; | |
| 11942 | ✗ | if (offset < nodeOffset + nextLevelSize) | |
| 11943 | { | ||
| 11944 | ✗ | node = node->split.leftChild; | |
| 11945 | } | ||
| 11946 | else | ||
| 11947 | { | ||
| 11948 | ✗ | node = node->split.leftChild->buddy; | |
| 11949 | ✗ | nodeOffset += nextLevelSize; | |
| 11950 | } | ||
| 11951 | ✗ | ++level; | |
| 11952 | ✗ | levelNodeSize = nextLevelSize; | |
| 11953 | } | ||
| 11954 | |||
| 11955 | ✗ | VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION); | |
| 11956 | ✗ | VMA_ASSERT(alloc == VK_NULL_HANDLE || node->allocation.alloc == alloc); | |
| 11957 | |||
| 11958 | ✗ | ++m_FreeCount; | |
| 11959 | ✗ | --m_AllocationCount; | |
| 11960 | ✗ | m_SumFreeSize += alloc->GetSize(); | |
| 11961 | |||
| 11962 | ✗ | node->type = Node::TYPE_FREE; | |
| 11963 | |||
| 11964 | // Join free nodes if possible. | ||
| 11965 | ✗ | while (level > 0 && node->buddy->type == Node::TYPE_FREE) | |
| 11966 | { | ||
| 11967 | ✗ | RemoveFromFreeList(level, node->buddy); | |
| 11968 | ✗ | Node* const parent = node->parent; | |
| 11969 | |||
| 11970 | ✗ | vma_delete(GetAllocationCallbacks(), node->buddy); | |
| 11971 | ✗ | vma_delete(GetAllocationCallbacks(), node); | |
| 11972 | ✗ | parent->type = Node::TYPE_FREE; | |
| 11973 | |||
| 11974 | ✗ | node = parent; | |
| 11975 | ✗ | --level; | |
| 11976 | //m_SumFreeSize += LevelToNodeSize(level) % 2; // Useful only when level node sizes can be non power of 2. | ||
| 11977 | ✗ | --m_FreeCount; | |
| 11978 | } | ||
| 11979 | |||
| 11980 | ✗ | AddToFreeListFront(level, node); | |
| 11981 | ✗ | } | |
| 11982 | |||
| 11983 | void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const | ||
| 11984 | { | ||
| 11985 | ✗ | switch (node->type) | |
| 11986 | { | ||
| 11987 | ✗ | case Node::TYPE_FREE: | |
| 11988 | ✗ | ++outInfo.unusedRangeCount; | |
| 11989 | ✗ | outInfo.unusedBytes += levelNodeSize; | |
| 11990 | ✗ | outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, levelNodeSize); | |
| 11991 | ✗ | outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, levelNodeSize); | |
| 11992 | ✗ | break; | |
| 11993 | ✗ | case Node::TYPE_ALLOCATION: | |
| 11994 | { | ||
| 11995 | ✗ | const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); | |
| 11996 | ✗ | ++outInfo.allocationCount; | |
| 11997 | ✗ | outInfo.usedBytes += allocSize; | |
| 11998 | ✗ | outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, allocSize); | |
| 11999 | ✗ | outInfo.allocationSizeMin = VMA_MAX(outInfo.allocationSizeMin, allocSize); | |
| 12000 | |||
| 12001 | ✗ | const VkDeviceSize unusedRangeSize = levelNodeSize - allocSize; | |
| 12002 | ✗ | if (unusedRangeSize > 0) | |
| 12003 | { | ||
| 12004 | ✗ | ++outInfo.unusedRangeCount; | |
| 12005 | ✗ | outInfo.unusedBytes += unusedRangeSize; | |
| 12006 | ✗ | outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusedRangeSize); | |
| 12007 | ✗ | outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, unusedRangeSize); | |
| 12008 | } | ||
| 12009 | } | ||
| 12010 | ✗ | break; | |
| 12011 | ✗ | case Node::TYPE_SPLIT: | |
| 12012 | { | ||
| 12013 | ✗ | const VkDeviceSize childrenNodeSize = levelNodeSize / 2; | |
| 12014 | ✗ | const Node* const leftChild = node->split.leftChild; | |
| 12015 | ✗ | CalcAllocationStatInfoNode(outInfo, leftChild, childrenNodeSize); | |
| 12016 | ✗ | const Node* const rightChild = leftChild->buddy; | |
| 12017 | ✗ | CalcAllocationStatInfoNode(outInfo, rightChild, childrenNodeSize); | |
| 12018 | } | ||
| 12019 | ✗ | break; | |
| 12020 | ✗ | default: | |
| 12021 | ✗ | VMA_ASSERT(0); | |
| 12022 | } | ||
| 12023 | ✗ | } | |
| 12024 | |||
| 12025 | void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node) | ||
| 12026 | { | ||
| 12027 | ✗ | VMA_ASSERT(node->type == Node::TYPE_FREE); | |
| 12028 | |||
| 12029 | // List is empty. | ||
| 12030 | ✗ | Node* const frontNode = m_FreeList[level].front; | |
| 12031 | ✗ | if (frontNode == VMA_NULL) | |
| 12032 | { | ||
| 12033 | ✗ | VMA_ASSERT(m_FreeList[level].back == VMA_NULL); | |
| 12034 | ✗ | node->free.prev = node->free.next = VMA_NULL; | |
| 12035 | ✗ | m_FreeList[level].front = m_FreeList[level].back = node; | |
| 12036 | } | ||
| 12037 | else | ||
| 12038 | { | ||
| 12039 | ✗ | VMA_ASSERT(frontNode->free.prev == VMA_NULL); | |
| 12040 | ✗ | node->free.prev = VMA_NULL; | |
| 12041 | ✗ | node->free.next = frontNode; | |
| 12042 | ✗ | frontNode->free.prev = node; | |
| 12043 | ✗ | m_FreeList[level].front = node; | |
| 12044 | } | ||
| 12045 | ✗ | } | |
| 12046 | |||
| 12047 | void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node) | ||
| 12048 | { | ||
| 12049 | ✗ | VMA_ASSERT(m_FreeList[level].front != VMA_NULL); | |
| 12050 | |||
| 12051 | // It is at the front. | ||
| 12052 | ✗ | if (node->free.prev == VMA_NULL) | |
| 12053 | { | ||
| 12054 | ✗ | VMA_ASSERT(m_FreeList[level].front == node); | |
| 12055 | ✗ | m_FreeList[level].front = node->free.next; | |
| 12056 | } | ||
| 12057 | else | ||
| 12058 | { | ||
| 12059 | ✗ | Node* const prevFreeNode = node->free.prev; | |
| 12060 | ✗ | VMA_ASSERT(prevFreeNode->free.next == node); | |
| 12061 | ✗ | prevFreeNode->free.next = node->free.next; | |
| 12062 | } | ||
| 12063 | |||
| 12064 | // It is at the back. | ||
| 12065 | ✗ | if (node->free.next == VMA_NULL) | |
| 12066 | { | ||
| 12067 | ✗ | VMA_ASSERT(m_FreeList[level].back == node); | |
| 12068 | ✗ | m_FreeList[level].back = node->free.prev; | |
| 12069 | } | ||
| 12070 | else | ||
| 12071 | { | ||
| 12072 | ✗ | Node* const nextFreeNode = node->free.next; | |
| 12073 | ✗ | VMA_ASSERT(nextFreeNode->free.prev == node); | |
| 12074 | ✗ | nextFreeNode->free.prev = node->free.prev; | |
| 12075 | } | ||
| 12076 | ✗ | } | |
| 12077 | |||
| 12078 | #if VMA_STATS_STRING_ENABLED | ||
| 12079 | void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const | ||
| 12080 | { | ||
| 12081 | ✗ | switch (node->type) | |
| 12082 | { | ||
| 12083 | ✗ | case Node::TYPE_FREE: | |
| 12084 | ✗ | PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize); | |
| 12085 | ✗ | break; | |
| 12086 | ✗ | case Node::TYPE_ALLOCATION: | |
| 12087 | { | ||
| 12088 | ✗ | PrintDetailedMap_Allocation(json, node->offset, node->allocation.alloc); | |
| 12089 | ✗ | const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); | |
| 12090 | ✗ | if (allocSize < levelNodeSize) | |
| 12091 | { | ||
| 12092 | ✗ | PrintDetailedMap_UnusedRange(json, node->offset + allocSize, levelNodeSize - allocSize); | |
| 12093 | } | ||
| 12094 | } | ||
| 12095 | ✗ | break; | |
| 12096 | ✗ | case Node::TYPE_SPLIT: | |
| 12097 | { | ||
| 12098 | ✗ | const VkDeviceSize childrenNodeSize = levelNodeSize / 2; | |
| 12099 | ✗ | const Node* const leftChild = node->split.leftChild; | |
| 12100 | ✗ | PrintDetailedMapNode(json, leftChild, childrenNodeSize); | |
| 12101 | ✗ | const Node* const rightChild = leftChild->buddy; | |
| 12102 | ✗ | PrintDetailedMapNode(json, rightChild, childrenNodeSize); | |
| 12103 | } | ||
| 12104 | ✗ | break; | |
| 12105 | ✗ | default: | |
| 12106 | ✗ | VMA_ASSERT(0); | |
| 12107 | } | ||
| 12108 | ✗ | } | |
| 12109 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 12110 | |||
| 12111 | |||
| 12112 | //////////////////////////////////////////////////////////////////////////////// | ||
| 12113 | // class VmaDeviceMemoryBlock | ||
| 12114 | |||
| 12115 | VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) : | ||
| 12116 | ✗ | m_pMetadata(VMA_NULL), | |
| 12117 | ✗ | m_MemoryTypeIndex(UINT32_MAX), | |
| 12118 | ✗ | m_Id(0), | |
| 12119 | ✗ | m_hMemory(VK_NULL_HANDLE), | |
| 12120 | ✗ | m_MapCount(0), | |
| 12121 | ✗ | m_pMappedData(VMA_NULL) | |
| 12122 | { | ||
| 12123 | ✗ | } | |
| 12124 | |||
| 12125 | void VmaDeviceMemoryBlock::Init( | ||
| 12126 | VmaAllocator hAllocator, | ||
| 12127 | VmaPool hParentPool, | ||
| 12128 | uint32_t newMemoryTypeIndex, | ||
| 12129 | VkDeviceMemory newMemory, | ||
| 12130 | VkDeviceSize newSize, | ||
| 12131 | uint32_t id, | ||
| 12132 | uint32_t algorithm) | ||
| 12133 | { | ||
| 12134 | ✗ | VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); | |
| 12135 | |||
| 12136 | ✗ | m_hParentPool = hParentPool; | |
| 12137 | ✗ | m_MemoryTypeIndex = newMemoryTypeIndex; | |
| 12138 | ✗ | m_Id = id; | |
| 12139 | ✗ | m_hMemory = newMemory; | |
| 12140 | |||
| 12141 | ✗ | switch (algorithm) | |
| 12142 | { | ||
| 12143 | ✗ | case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: | |
| 12144 | ✗ | m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator); | |
| 12145 | ✗ | break; | |
| 12146 | ✗ | case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: | |
| 12147 | ✗ | m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator); | |
| 12148 | ✗ | break; | |
| 12149 | ✗ | default: | |
| 12150 | ✗ | VMA_ASSERT(0); | |
| 12151 | // Fall-through. | ||
| 12152 | ✗ | case 0: | |
| 12153 | ✗ | m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator); | |
| 12154 | } | ||
| 12155 | ✗ | m_pMetadata->Init(newSize); | |
| 12156 | ✗ | } | |
| 12157 | |||
| 12158 | void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) | ||
| 12159 | { | ||
| 12160 | // This is the most important assert in the entire library. | ||
| 12161 | // Hitting it means you have some memory leak - unreleased VmaAllocation objects. | ||
| 12162 | ✗ | VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!"); | |
| 12163 | |||
| 12164 | ✗ | VMA_ASSERT(m_hMemory != VK_NULL_HANDLE); | |
| 12165 | ✗ | allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory); | |
| 12166 | ✗ | m_hMemory = VK_NULL_HANDLE; | |
| 12167 | |||
| 12168 | ✗ | vma_delete(allocator, m_pMetadata); | |
| 12169 | ✗ | m_pMetadata = VMA_NULL; | |
| 12170 | ✗ | } | |
| 12171 | |||
| 12172 | bool VmaDeviceMemoryBlock::Validate() const | ||
| 12173 | { | ||
| 12174 | ✗ | VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) && | |
| 12175 | (m_pMetadata->GetSize() != 0)); | ||
| 12176 | |||
| 12177 | ✗ | return m_pMetadata->Validate(); | |
| 12178 | } | ||
| 12179 | |||
| 12180 | VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) | ||
| 12181 | { | ||
| 12182 | ✗ | void* pData = nullptr; | |
| 12183 | ✗ | VkResult res = Map(hAllocator, 1, &pData); | |
| 12184 | ✗ | if (res != VK_SUCCESS) | |
| 12185 | { | ||
| 12186 | ✗ | return res; | |
| 12187 | } | ||
| 12188 | |||
| 12189 | ✗ | res = m_pMetadata->CheckCorruption(pData); | |
| 12190 | |||
| 12191 | ✗ | Unmap(hAllocator, 1); | |
| 12192 | |||
| 12193 | ✗ | return res; | |
| 12194 | } | ||
| 12195 | |||
| 12196 | VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData) | ||
| 12197 | { | ||
| 12198 | ✗ | if (count == 0) | |
| 12199 | { | ||
| 12200 | ✗ | return VK_SUCCESS; | |
| 12201 | } | ||
| 12202 | |||
| 12203 | ✗ | VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); | |
| 12204 | ✗ | if (m_MapCount != 0) | |
| 12205 | { | ||
| 12206 | ✗ | m_MapCount += count; | |
| 12207 | ✗ | VMA_ASSERT(m_pMappedData != VMA_NULL); | |
| 12208 | ✗ | if (ppData != VMA_NULL) | |
| 12209 | { | ||
| 12210 | ✗ | *ppData = m_pMappedData; | |
| 12211 | } | ||
| 12212 | ✗ | return VK_SUCCESS; | |
| 12213 | } | ||
| 12214 | else | ||
| 12215 | { | ||
| 12216 | ✗ | VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( | |
| 12217 | hAllocator->m_hDevice, | ||
| 12218 | m_hMemory, | ||
| 12219 | 0, // offset | ||
| 12220 | VK_WHOLE_SIZE, | ||
| 12221 | 0, // flags | ||
| 12222 | &m_pMappedData); | ||
| 12223 | ✗ | if (result == VK_SUCCESS) | |
| 12224 | { | ||
| 12225 | ✗ | if (ppData != VMA_NULL) | |
| 12226 | { | ||
| 12227 | ✗ | *ppData = m_pMappedData; | |
| 12228 | } | ||
| 12229 | ✗ | m_MapCount = count; | |
| 12230 | } | ||
| 12231 | ✗ | return result; | |
| 12232 | } | ||
| 12233 | ✗ | } | |
| 12234 | |||
| 12235 | void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) | ||
| 12236 | { | ||
| 12237 | ✗ | if (count == 0) | |
| 12238 | { | ||
| 12239 | ✗ | return; | |
| 12240 | } | ||
| 12241 | |||
| 12242 | ✗ | VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); | |
| 12243 | ✗ | if (m_MapCount >= count) | |
| 12244 | { | ||
| 12245 | ✗ | m_MapCount -= count; | |
| 12246 | ✗ | if (m_MapCount == 0) | |
| 12247 | { | ||
| 12248 | ✗ | m_pMappedData = VMA_NULL; | |
| 12249 | ✗ | (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); | |
| 12250 | } | ||
| 12251 | } | ||
| 12252 | else | ||
| 12253 | { | ||
| 12254 | ✗ | VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped."); | |
| 12255 | } | ||
| 12256 | ✗ | } | |
| 12257 | |||
| 12258 | VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) | ||
| 12259 | { | ||
| 12260 | ✗ | VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); | |
| 12261 | VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); | ||
| 12262 | |||
| 12263 | void* pData; | ||
| 12264 | VkResult res = Map(hAllocator, 1, &pData); | ||
| 12265 | if (res != VK_SUCCESS) | ||
| 12266 | { | ||
| 12267 | return res; | ||
| 12268 | } | ||
| 12269 | |||
| 12270 | VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN); | ||
| 12271 | VmaWriteMagicValue(pData, allocOffset + allocSize); | ||
| 12272 | |||
| 12273 | Unmap(hAllocator, 1); | ||
| 12274 | |||
| 12275 | return VK_SUCCESS; | ||
| 12276 | } | ||
| 12277 | |||
| 12278 | VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) | ||
| 12279 | { | ||
| 12280 | ✗ | VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); | |
| 12281 | VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); | ||
| 12282 | |||
| 12283 | void* pData; | ||
| 12284 | VkResult res = Map(hAllocator, 1, &pData); | ||
| 12285 | if (res != VK_SUCCESS) | ||
| 12286 | { | ||
| 12287 | return res; | ||
| 12288 | } | ||
| 12289 | |||
| 12290 | if (!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN)) | ||
| 12291 | { | ||
| 12292 | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!"); | ||
| 12293 | } | ||
| 12294 | else if (!VmaValidateMagicValue(pData, allocOffset + allocSize)) | ||
| 12295 | { | ||
| 12296 | VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!"); | ||
| 12297 | } | ||
| 12298 | |||
| 12299 | Unmap(hAllocator, 1); | ||
| 12300 | |||
| 12301 | return VK_SUCCESS; | ||
| 12302 | } | ||
| 12303 | |||
| 12304 | VkResult VmaDeviceMemoryBlock::BindBufferMemory( | ||
| 12305 | const VmaAllocator hAllocator, | ||
| 12306 | const VmaAllocation hAllocation, | ||
| 12307 | VkDeviceSize allocationLocalOffset, | ||
| 12308 | VkBuffer hBuffer, | ||
| 12309 | const void* pNext) | ||
| 12310 | { | ||
| 12311 | ✗ | VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && | |
| 12312 | hAllocation->GetBlock() == this); | ||
| 12313 | ✗ | VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && | |
| 12314 | "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); | ||
| 12315 | ✗ | const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; | |
| 12316 | // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. | ||
| 12317 | ✗ | VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); | |
| 12318 | ✗ | return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext); | |
| 12319 | ✗ | } | |
| 12320 | |||
| 12321 | VkResult VmaDeviceMemoryBlock::BindImageMemory( | ||
| 12322 | const VmaAllocator hAllocator, | ||
| 12323 | const VmaAllocation hAllocation, | ||
| 12324 | VkDeviceSize allocationLocalOffset, | ||
| 12325 | VkImage hImage, | ||
| 12326 | const void* pNext) | ||
| 12327 | { | ||
| 12328 | ✗ | VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && | |
| 12329 | hAllocation->GetBlock() == this); | ||
| 12330 | ✗ | VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && | |
| 12331 | "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); | ||
| 12332 | ✗ | const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; | |
| 12333 | // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. | ||
| 12334 | ✗ | VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); | |
| 12335 | ✗ | return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext); | |
| 12336 | ✗ | } | |
| 12337 | |||
| 12338 | static void InitStatInfo(VmaStatInfo& outInfo) | ||
| 12339 | { | ||
| 12340 | ✗ | memset(&outInfo, 0, sizeof(outInfo)); | |
| 12341 | ✗ | outInfo.allocationSizeMin = UINT64_MAX; | |
| 12342 | ✗ | outInfo.unusedRangeSizeMin = UINT64_MAX; | |
| 12343 | ✗ | } | |
| 12344 | |||
| 12345 | // Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo. | ||
| 12346 | static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo) | ||
| 12347 | { | ||
| 12348 | ✗ | inoutInfo.blockCount += srcInfo.blockCount; | |
| 12349 | ✗ | inoutInfo.allocationCount += srcInfo.allocationCount; | |
| 12350 | ✗ | inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount; | |
| 12351 | ✗ | inoutInfo.usedBytes += srcInfo.usedBytes; | |
| 12352 | ✗ | inoutInfo.unusedBytes += srcInfo.unusedBytes; | |
| 12353 | ✗ | inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin); | |
| 12354 | ✗ | inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax); | |
| 12355 | ✗ | inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin); | |
| 12356 | ✗ | inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax); | |
| 12357 | ✗ | } | |
| 12358 | |||
| 12359 | static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo) | ||
| 12360 | { | ||
| 12361 | ✗ | inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ? | |
| 12362 | ✗ | VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0; | |
| 12363 | ✗ | inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ? | |
| 12364 | ✗ | VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0; | |
| 12365 | ✗ | } | |
| 12366 | |||
| 12367 | VmaPool_T::VmaPool_T( | ||
| 12368 | VmaAllocator hAllocator, | ||
| 12369 | const VmaPoolCreateInfo& createInfo, | ||
| 12370 | ✗ | VkDeviceSize preferredBlockSize) : | |
| 12371 | ✗ | m_BlockVector( | |
| 12372 | hAllocator, | ||
| 12373 | this, // hParentPool | ||
| 12374 | ✗ | createInfo.memoryTypeIndex, | |
| 12375 | ✗ | createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, | |
| 12376 | ✗ | createInfo.minBlockCount, | |
| 12377 | ✗ | createInfo.maxBlockCount, | |
| 12378 | ✗ | (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), | |
| 12379 | ✗ | createInfo.frameInUseCount, | |
| 12380 | ✗ | createInfo.blockSize != 0, // explicitBlockSize | |
| 12381 | ✗ | createInfo.flags& VMA_POOL_CREATE_ALGORITHM_MASK), // algorithm | |
| 12382 | ✗ | m_Id(0), | |
| 12383 | ✗ | m_Name(VMA_NULL) | |
| 12384 | { | ||
| 12385 | ✗ | } | |
| 12386 | |||
| 12387 | VmaPool_T::~VmaPool_T() | ||
| 12388 | { | ||
| 12389 | ✗ | } | |
| 12390 | |||
| 12391 | void VmaPool_T::SetName(const char* pName) | ||
| 12392 | { | ||
| 12393 | ✗ | const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); | |
| 12394 | ✗ | VmaFreeString(allocs, m_Name); | |
| 12395 | |||
| 12396 | ✗ | if (pName != VMA_NULL) | |
| 12397 | { | ||
| 12398 | ✗ | m_Name = VmaCreateStringCopy(allocs, pName); | |
| 12399 | } | ||
| 12400 | else | ||
| 12401 | { | ||
| 12402 | ✗ | m_Name = VMA_NULL; | |
| 12403 | } | ||
| 12404 | ✗ | } | |
| 12405 | |||
| 12406 | #if VMA_STATS_STRING_ENABLED | ||
| 12407 | |||
| 12408 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 12409 | |||
| 12410 | VmaBlockVector::VmaBlockVector( | ||
| 12411 | VmaAllocator hAllocator, | ||
| 12412 | VmaPool hParentPool, | ||
| 12413 | uint32_t memoryTypeIndex, | ||
| 12414 | VkDeviceSize preferredBlockSize, | ||
| 12415 | size_t minBlockCount, | ||
| 12416 | size_t maxBlockCount, | ||
| 12417 | VkDeviceSize bufferImageGranularity, | ||
| 12418 | uint32_t frameInUseCount, | ||
| 12419 | bool explicitBlockSize, | ||
| 12420 | ✗ | uint32_t algorithm) : | |
| 12421 | ✗ | m_hAllocator(hAllocator), | |
| 12422 | ✗ | m_hParentPool(hParentPool), | |
| 12423 | ✗ | m_MemoryTypeIndex(memoryTypeIndex), | |
| 12424 | ✗ | m_PreferredBlockSize(preferredBlockSize), | |
| 12425 | ✗ | m_MinBlockCount(minBlockCount), | |
| 12426 | ✗ | m_MaxBlockCount(maxBlockCount), | |
| 12427 | ✗ | m_BufferImageGranularity(bufferImageGranularity), | |
| 12428 | ✗ | m_FrameInUseCount(frameInUseCount), | |
| 12429 | ✗ | m_ExplicitBlockSize(explicitBlockSize), | |
| 12430 | ✗ | m_Algorithm(algorithm), | |
| 12431 | ✗ | m_HasEmptyBlock(false), | |
| 12432 | ✗ | m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())), | |
| 12433 | ✗ | m_NextBlockId(0) | |
| 12434 | { | ||
| 12435 | ✗ | } | |
| 12436 | |||
| 12437 | VmaBlockVector::~VmaBlockVector() | ||
| 12438 | { | ||
| 12439 | ✗ | for (size_t i = m_Blocks.size(); i--; ) | |
| 12440 | { | ||
| 12441 | ✗ | m_Blocks[i]->Destroy(m_hAllocator); | |
| 12442 | ✗ | vma_delete(m_hAllocator, m_Blocks[i]); | |
| 12443 | } | ||
| 12444 | ✗ | } | |
| 12445 | |||
| 12446 | VkResult VmaBlockVector::CreateMinBlocks() | ||
| 12447 | { | ||
| 12448 | ✗ | for (size_t i = 0; i < m_MinBlockCount; ++i) | |
| 12449 | { | ||
| 12450 | ✗ | VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL); | |
| 12451 | ✗ | if (res != VK_SUCCESS) | |
| 12452 | { | ||
| 12453 | ✗ | return res; | |
| 12454 | } | ||
| 12455 | } | ||
| 12456 | ✗ | return VK_SUCCESS; | |
| 12457 | } | ||
| 12458 | |||
| 12459 | void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats) | ||
| 12460 | { | ||
| 12461 | ✗ | VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); | |
| 12462 | |||
| 12463 | ✗ | const size_t blockCount = m_Blocks.size(); | |
| 12464 | |||
| 12465 | ✗ | pStats->size = 0; | |
| 12466 | ✗ | pStats->unusedSize = 0; | |
| 12467 | ✗ | pStats->allocationCount = 0; | |
| 12468 | ✗ | pStats->unusedRangeCount = 0; | |
| 12469 | ✗ | pStats->unusedRangeSizeMax = 0; | |
| 12470 | ✗ | pStats->blockCount = blockCount; | |
| 12471 | |||
| 12472 | ✗ | for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) | |
| 12473 | { | ||
| 12474 | ✗ | const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; | |
| 12475 | ✗ | VMA_ASSERT(pBlock); | |
| 12476 | VMA_HEAVY_ASSERT(pBlock->Validate()); | ||
| 12477 | ✗ | pBlock->m_pMetadata->AddPoolStats(*pStats); | |
| 12478 | } | ||
| 12479 | ✗ | } | |
| 12480 | |||
| 12481 | bool VmaBlockVector::IsEmpty() | ||
| 12482 | { | ||
| 12483 | ✗ | VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); | |
| 12484 | ✗ | return m_Blocks.empty(); | |
| 12485 | ✗ | } | |
| 12486 | |||
| 12487 | bool VmaBlockVector::IsCorruptionDetectionEnabled() const | ||
| 12488 | { | ||
| 12489 | ✗ | const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; | |
| 12490 | return (VMA_DEBUG_DETECT_CORRUPTION != 0) && | ||
| 12491 | (VMA_DEBUG_MARGIN > 0) && | ||
| 12492 | (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) && | ||
| 12493 | ✗ | (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags; | |
| 12494 | } | ||
| 12495 | |||
| 12496 | static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32; | ||
| 12497 | |||
| 12498 | VkResult VmaBlockVector::Allocate( | ||
| 12499 | uint32_t currentFrameIndex, | ||
| 12500 | VkDeviceSize size, | ||
| 12501 | VkDeviceSize alignment, | ||
| 12502 | const VmaAllocationCreateInfo& createInfo, | ||
| 12503 | VmaSuballocationType suballocType, | ||
| 12504 | size_t allocationCount, | ||
| 12505 | VmaAllocation* pAllocations) | ||
| 12506 | { | ||
| 12507 | size_t allocIndex; | ||
| 12508 | ✗ | VkResult res = VK_SUCCESS; | |
| 12509 | |||
| 12510 | ✗ | if (IsCorruptionDetectionEnabled()) | |
| 12511 | { | ||
| 12512 | ✗ | size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); | |
| 12513 | ✗ | alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); | |
| 12514 | } | ||
| 12515 | |||
| 12516 | { | ||
| 12517 | ✗ | VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); | |
| 12518 | ✗ | for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) | |
| 12519 | { | ||
| 12520 | ✗ | res = AllocatePage( | |
| 12521 | currentFrameIndex, | ||
| 12522 | size, | ||
| 12523 | alignment, | ||
| 12524 | createInfo, | ||
| 12525 | suballocType, | ||
| 12526 | ✗ | pAllocations + allocIndex); | |
| 12527 | ✗ | if (res != VK_SUCCESS) | |
| 12528 | { | ||
| 12529 | ✗ | break; | |
| 12530 | } | ||
| 12531 | } | ||
| 12532 | ✗ | } | |
| 12533 | |||
| 12534 | ✗ | if (res != VK_SUCCESS) | |
| 12535 | { | ||
| 12536 | // Free all already created allocations. | ||
| 12537 | ✗ | while (allocIndex--) | |
| 12538 | { | ||
| 12539 | ✗ | Free(pAllocations[allocIndex]); | |
| 12540 | } | ||
| 12541 | ✗ | memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); | |
| 12542 | } | ||
| 12543 | |||
| 12544 | ✗ | return res; | |
| 12545 | } | ||
| 12546 | |||
| 12547 | VkResult VmaBlockVector::AllocatePage( | ||
| 12548 | uint32_t currentFrameIndex, | ||
| 12549 | VkDeviceSize size, | ||
| 12550 | VkDeviceSize alignment, | ||
| 12551 | const VmaAllocationCreateInfo& createInfo, | ||
| 12552 | VmaSuballocationType suballocType, | ||
| 12553 | VmaAllocation* pAllocation) | ||
| 12554 | { | ||
| 12555 | ✗ | const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; | |
| 12556 | ✗ | bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0; | |
| 12557 | ✗ | const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; | |
| 12558 | ✗ | const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; | |
| 12559 | |||
| 12560 | VkDeviceSize freeMemory; | ||
| 12561 | { | ||
| 12562 | ✗ | const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); | |
| 12563 | ✗ | VmaBudget heapBudget = {}; | |
| 12564 | ✗ | m_hAllocator->GetBudget(&heapBudget, heapIndex, 1); | |
| 12565 | ✗ | freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0; | |
| 12566 | } | ||
| 12567 | |||
| 12568 | ✗ | const bool canFallbackToDedicated = !IsCustomPool(); | |
| 12569 | const bool canCreateNewBlock = | ||
| 12570 | ✗ | ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) && | |
| 12571 | ✗ | (m_Blocks.size() < m_MaxBlockCount) && | |
| 12572 | ✗ | (freeMemory >= size || !canFallbackToDedicated); | |
| 12573 | ✗ | uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK; | |
| 12574 | |||
| 12575 | // If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer. | ||
| 12576 | // Which in turn is available only when maxBlockCount = 1. | ||
| 12577 | ✗ | if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1) | |
| 12578 | { | ||
| 12579 | ✗ | canMakeOtherLost = false; | |
| 12580 | } | ||
| 12581 | |||
| 12582 | // Upper address can only be used with linear allocator and within single memory block. | ||
| 12583 | ✗ | if (isUpperAddress && | |
| 12584 | ✗ | (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) | |
| 12585 | { | ||
| 12586 | ✗ | return VK_ERROR_FEATURE_NOT_PRESENT; | |
| 12587 | } | ||
| 12588 | |||
| 12589 | // Validate strategy. | ||
| 12590 | ✗ | switch (strategy) | |
| 12591 | { | ||
| 12592 | ✗ | case 0: | |
| 12593 | ✗ | strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT; | |
| 12594 | ✗ | break; | |
| 12595 | ✗ | case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT: | |
| 12596 | case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT: | ||
| 12597 | case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT: | ||
| 12598 | ✗ | break; | |
| 12599 | ✗ | default: | |
| 12600 | ✗ | return VK_ERROR_FEATURE_NOT_PRESENT; | |
| 12601 | } | ||
| 12602 | |||
| 12603 | // Early reject: requested allocation size is larger that maximum block size for this block vector. | ||
| 12604 | ✗ | if (size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize) | |
| 12605 | { | ||
| 12606 | ✗ | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | |
| 12607 | } | ||
| 12608 | |||
| 12609 | /* | ||
| 12610 | Under certain condition, this whole section can be skipped for optimization, so | ||
| 12611 | we move on directly to trying to allocate with canMakeOtherLost. That's the case | ||
| 12612 | e.g. for custom pools with linear algorithm. | ||
| 12613 | */ | ||
| 12614 | ✗ | if (!canMakeOtherLost || canCreateNewBlock) | |
| 12615 | { | ||
| 12616 | // 1. Search existing allocations. Try to allocate without making other allocations lost. | ||
| 12617 | ✗ | VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags; | |
| 12618 | ✗ | allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; | |
| 12619 | |||
| 12620 | ✗ | if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) | |
| 12621 | { | ||
| 12622 | // Use only last block. | ||
| 12623 | ✗ | if (!m_Blocks.empty()) | |
| 12624 | { | ||
| 12625 | ✗ | VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back(); | |
| 12626 | ✗ | VMA_ASSERT(pCurrBlock); | |
| 12627 | ✗ | VkResult res = AllocateFromBlock( | |
| 12628 | pCurrBlock, | ||
| 12629 | currentFrameIndex, | ||
| 12630 | size, | ||
| 12631 | alignment, | ||
| 12632 | allocFlagsCopy, | ||
| 12633 | ✗ | createInfo.pUserData, | |
| 12634 | suballocType, | ||
| 12635 | strategy, | ||
| 12636 | pAllocation); | ||
| 12637 | ✗ | if (res == VK_SUCCESS) | |
| 12638 | { | ||
| 12639 | VMA_DEBUG_LOG(" Returned from last block #%u", pCurrBlock->GetId()); | ||
| 12640 | ✗ | return VK_SUCCESS; | |
| 12641 | } | ||
| 12642 | } | ||
| 12643 | } | ||
| 12644 | else | ||
| 12645 | { | ||
| 12646 | ✗ | if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) | |
| 12647 | { | ||
| 12648 | // Forward order in m_Blocks - prefer blocks with smallest amount of free space. | ||
| 12649 | ✗ | for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) | |
| 12650 | { | ||
| 12651 | ✗ | VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; | |
| 12652 | ✗ | VMA_ASSERT(pCurrBlock); | |
| 12653 | ✗ | VkResult res = AllocateFromBlock( | |
| 12654 | pCurrBlock, | ||
| 12655 | currentFrameIndex, | ||
| 12656 | size, | ||
| 12657 | alignment, | ||
| 12658 | allocFlagsCopy, | ||
| 12659 | ✗ | createInfo.pUserData, | |
| 12660 | suballocType, | ||
| 12661 | strategy, | ||
| 12662 | pAllocation); | ||
| 12663 | ✗ | if (res == VK_SUCCESS) | |
| 12664 | { | ||
| 12665 | VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); | ||
| 12666 | ✗ | return VK_SUCCESS; | |
| 12667 | } | ||
| 12668 | } | ||
| 12669 | } | ||
| 12670 | else // WORST_FIT, FIRST_FIT | ||
| 12671 | { | ||
| 12672 | // Backward order in m_Blocks - prefer blocks with largest amount of free space. | ||
| 12673 | ✗ | for (size_t blockIndex = m_Blocks.size(); blockIndex--; ) | |
| 12674 | { | ||
| 12675 | ✗ | VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; | |
| 12676 | ✗ | VMA_ASSERT(pCurrBlock); | |
| 12677 | ✗ | VkResult res = AllocateFromBlock( | |
| 12678 | pCurrBlock, | ||
| 12679 | currentFrameIndex, | ||
| 12680 | size, | ||
| 12681 | alignment, | ||
| 12682 | allocFlagsCopy, | ||
| 12683 | ✗ | createInfo.pUserData, | |
| 12684 | suballocType, | ||
| 12685 | strategy, | ||
| 12686 | pAllocation); | ||
| 12687 | ✗ | if (res == VK_SUCCESS) | |
| 12688 | { | ||
| 12689 | VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); | ||
| 12690 | ✗ | return VK_SUCCESS; | |
| 12691 | } | ||
| 12692 | } | ||
| 12693 | } | ||
| 12694 | } | ||
| 12695 | |||
| 12696 | // 2. Try to create new block. | ||
| 12697 | ✗ | if (canCreateNewBlock) | |
| 12698 | { | ||
| 12699 | // Calculate optimal size for new block. | ||
| 12700 | ✗ | VkDeviceSize newBlockSize = m_PreferredBlockSize; | |
| 12701 | ✗ | uint32_t newBlockSizeShift = 0; | |
| 12702 | ✗ | const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3; | |
| 12703 | |||
| 12704 | ✗ | if (!m_ExplicitBlockSize) | |
| 12705 | { | ||
| 12706 | // Allocate 1/8, 1/4, 1/2 as first blocks. | ||
| 12707 | ✗ | const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize(); | |
| 12708 | ✗ | for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) | |
| 12709 | { | ||
| 12710 | ✗ | const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; | |
| 12711 | ✗ | if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) | |
| 12712 | { | ||
| 12713 | ✗ | newBlockSize = smallerNewBlockSize; | |
| 12714 | ✗ | ++newBlockSizeShift; | |
| 12715 | } | ||
| 12716 | else | ||
| 12717 | { | ||
| 12718 | break; | ||
| 12719 | } | ||
| 12720 | } | ||
| 12721 | } | ||
| 12722 | |||
| 12723 | ✗ | size_t newBlockIndex = 0; | |
| 12724 | ✗ | VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? | |
| 12725 | ✗ | CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; | |
| 12726 | // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize. | ||
| 12727 | ✗ | if (!m_ExplicitBlockSize) | |
| 12728 | { | ||
| 12729 | ✗ | while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) | |
| 12730 | { | ||
| 12731 | ✗ | const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; | |
| 12732 | ✗ | if (smallerNewBlockSize >= size) | |
| 12733 | { | ||
| 12734 | ✗ | newBlockSize = smallerNewBlockSize; | |
| 12735 | ✗ | ++newBlockSizeShift; | |
| 12736 | ✗ | res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? | |
| 12737 | ✗ | CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; | |
| 12738 | } | ||
| 12739 | else | ||
| 12740 | { | ||
| 12741 | ✗ | break; | |
| 12742 | } | ||
| 12743 | } | ||
| 12744 | } | ||
| 12745 | |||
| 12746 | ✗ | if (res == VK_SUCCESS) | |
| 12747 | { | ||
| 12748 | ✗ | VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex]; | |
| 12749 | ✗ | VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size); | |
| 12750 | |||
| 12751 | ✗ | res = AllocateFromBlock( | |
| 12752 | pBlock, | ||
| 12753 | currentFrameIndex, | ||
| 12754 | size, | ||
| 12755 | alignment, | ||
| 12756 | allocFlagsCopy, | ||
| 12757 | ✗ | createInfo.pUserData, | |
| 12758 | suballocType, | ||
| 12759 | strategy, | ||
| 12760 | pAllocation); | ||
| 12761 | ✗ | if (res == VK_SUCCESS) | |
| 12762 | { | ||
| 12763 | VMA_DEBUG_LOG(" Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize); | ||
| 12764 | ✗ | return VK_SUCCESS; | |
| 12765 | } | ||
| 12766 | else | ||
| 12767 | { | ||
| 12768 | // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment. | ||
| 12769 | ✗ | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | |
| 12770 | } | ||
| 12771 | } | ||
| 12772 | } | ||
| 12773 | } | ||
| 12774 | |||
| 12775 | // 3. Try to allocate from existing blocks with making other allocations lost. | ||
| 12776 | ✗ | if (canMakeOtherLost) | |
| 12777 | { | ||
| 12778 | ✗ | uint32_t tryIndex = 0; | |
| 12779 | ✗ | for (; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex) | |
| 12780 | { | ||
| 12781 | ✗ | VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL; | |
| 12782 | ✗ | VmaAllocationRequest bestRequest = {}; | |
| 12783 | ✗ | VkDeviceSize bestRequestCost = VK_WHOLE_SIZE; | |
| 12784 | |||
| 12785 | // 1. Search existing allocations. | ||
| 12786 | ✗ | if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) | |
| 12787 | { | ||
| 12788 | // Forward order in m_Blocks - prefer blocks with smallest amount of free space. | ||
| 12789 | ✗ | for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) | |
| 12790 | { | ||
| 12791 | ✗ | VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; | |
| 12792 | ✗ | VMA_ASSERT(pCurrBlock); | |
| 12793 | ✗ | VmaAllocationRequest currRequest = {}; | |
| 12794 | ✗ | if (pCurrBlock->m_pMetadata->CreateAllocationRequest( | |
| 12795 | currentFrameIndex, | ||
| 12796 | ✗ | m_FrameInUseCount, | |
| 12797 | ✗ | m_BufferImageGranularity, | |
| 12798 | size, | ||
| 12799 | alignment, | ||
| 12800 | ✗ | (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, | |
| 12801 | suballocType, | ||
| 12802 | canMakeOtherLost, | ||
| 12803 | strategy, | ||
| 12804 | &currRequest)) | ||
| 12805 | { | ||
| 12806 | ✗ | const VkDeviceSize currRequestCost = currRequest.CalcCost(); | |
| 12807 | ✗ | if (pBestRequestBlock == VMA_NULL || | |
| 12808 | currRequestCost < bestRequestCost) | ||
| 12809 | { | ||
| 12810 | ✗ | pBestRequestBlock = pCurrBlock; | |
| 12811 | ✗ | bestRequest = currRequest; | |
| 12812 | ✗ | bestRequestCost = currRequestCost; | |
| 12813 | |||
| 12814 | ✗ | if (bestRequestCost == 0) | |
| 12815 | { | ||
| 12816 | ✗ | break; | |
| 12817 | } | ||
| 12818 | } | ||
| 12819 | } | ||
| 12820 | } | ||
| 12821 | } | ||
| 12822 | else // WORST_FIT, FIRST_FIT | ||
| 12823 | { | ||
| 12824 | // Backward order in m_Blocks - prefer blocks with largest amount of free space. | ||
| 12825 | ✗ | for (size_t blockIndex = m_Blocks.size(); blockIndex--; ) | |
| 12826 | { | ||
| 12827 | ✗ | VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; | |
| 12828 | ✗ | VMA_ASSERT(pCurrBlock); | |
| 12829 | ✗ | VmaAllocationRequest currRequest = {}; | |
| 12830 | ✗ | if (pCurrBlock->m_pMetadata->CreateAllocationRequest( | |
| 12831 | currentFrameIndex, | ||
| 12832 | ✗ | m_FrameInUseCount, | |
| 12833 | ✗ | m_BufferImageGranularity, | |
| 12834 | size, | ||
| 12835 | alignment, | ||
| 12836 | ✗ | (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, | |
| 12837 | suballocType, | ||
| 12838 | canMakeOtherLost, | ||
| 12839 | strategy, | ||
| 12840 | &currRequest)) | ||
| 12841 | { | ||
| 12842 | ✗ | const VkDeviceSize currRequestCost = currRequest.CalcCost(); | |
| 12843 | ✗ | if (pBestRequestBlock == VMA_NULL || | |
| 12844 | ✗ | currRequestCost < bestRequestCost || | |
| 12845 | strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) | ||
| 12846 | { | ||
| 12847 | ✗ | pBestRequestBlock = pCurrBlock; | |
| 12848 | ✗ | bestRequest = currRequest; | |
| 12849 | ✗ | bestRequestCost = currRequestCost; | |
| 12850 | |||
| 12851 | ✗ | if (bestRequestCost == 0 || | |
| 12852 | strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) | ||
| 12853 | { | ||
| 12854 | break; | ||
| 12855 | } | ||
| 12856 | } | ||
| 12857 | } | ||
| 12858 | } | ||
| 12859 | } | ||
| 12860 | |||
| 12861 | ✗ | if (pBestRequestBlock != VMA_NULL) | |
| 12862 | { | ||
| 12863 | ✗ | if (mapped) | |
| 12864 | { | ||
| 12865 | ✗ | VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL); | |
| 12866 | ✗ | if (res != VK_SUCCESS) | |
| 12867 | { | ||
| 12868 | ✗ | return res; | |
| 12869 | } | ||
| 12870 | } | ||
| 12871 | |||
| 12872 | ✗ | if (pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost( | |
| 12873 | currentFrameIndex, | ||
| 12874 | ✗ | m_FrameInUseCount, | |
| 12875 | &bestRequest)) | ||
| 12876 | { | ||
| 12877 | // Allocate from this pBlock. | ||
| 12878 | ✗ | *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(currentFrameIndex, isUserDataString); | |
| 12879 | ✗ | pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, size, *pAllocation); | |
| 12880 | ✗ | UpdateHasEmptyBlock(); | |
| 12881 | ✗ | (*pAllocation)->InitBlockAllocation( | |
| 12882 | pBestRequestBlock, | ||
| 12883 | bestRequest.offset, | ||
| 12884 | alignment, | ||
| 12885 | size, | ||
| 12886 | ✗ | m_MemoryTypeIndex, | |
| 12887 | suballocType, | ||
| 12888 | mapped, | ||
| 12889 | ✗ | (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); | |
| 12890 | VMA_HEAVY_ASSERT(pBestRequestBlock->Validate()); | ||
| 12891 | VMA_DEBUG_LOG(" Returned from existing block"); | ||
| 12892 | ✗ | (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData); | |
| 12893 | ✗ | m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size); | |
| 12894 | if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) | ||
| 12895 | { | ||
| 12896 | m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); | ||
| 12897 | } | ||
| 12898 | ✗ | if (IsCorruptionDetectionEnabled()) | |
| 12899 | { | ||
| 12900 | ✗ | VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, size); | |
| 12901 | ✗ | VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); | |
| 12902 | } | ||
| 12903 | ✗ | return VK_SUCCESS; | |
| 12904 | } | ||
| 12905 | // else: Some allocations must have been touched while we are here. Next try. | ||
| 12906 | } | ||
| 12907 | else | ||
| 12908 | { | ||
| 12909 | // Could not find place in any of the blocks - break outer loop. | ||
| 12910 | ✗ | break; | |
| 12911 | } | ||
| 12912 | } | ||
| 12913 | /* Maximum number of tries exceeded - a very unlike event when many other | ||
| 12914 | threads are simultaneously touching allocations making it impossible to make | ||
| 12915 | lost at the same time as we try to allocate. */ | ||
| 12916 | ✗ | if (tryIndex == VMA_ALLOCATION_TRY_COUNT) | |
| 12917 | { | ||
| 12918 | ✗ | return VK_ERROR_TOO_MANY_OBJECTS; | |
| 12919 | } | ||
| 12920 | } | ||
| 12921 | |||
| 12922 | ✗ | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | |
| 12923 | } | ||
| 12924 | |||
| 12925 | void VmaBlockVector::Free( | ||
| 12926 | const VmaAllocation hAllocation) | ||
| 12927 | { | ||
| 12928 | ✗ | VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL; | |
| 12929 | |||
| 12930 | ✗ | bool budgetExceeded = false; | |
| 12931 | { | ||
| 12932 | ✗ | const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); | |
| 12933 | ✗ | VmaBudget heapBudget = {}; | |
| 12934 | ✗ | m_hAllocator->GetBudget(&heapBudget, heapIndex, 1); | |
| 12935 | ✗ | budgetExceeded = heapBudget.usage >= heapBudget.budget; | |
| 12936 | } | ||
| 12937 | |||
| 12938 | // Scope for lock. | ||
| 12939 | { | ||
| 12940 | ✗ | VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); | |
| 12941 | |||
| 12942 | ✗ | VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); | |
| 12943 | |||
| 12944 | ✗ | if (IsCorruptionDetectionEnabled()) | |
| 12945 | { | ||
| 12946 | ✗ | VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize()); | |
| 12947 | ✗ | VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value."); | |
| 12948 | } | ||
| 12949 | |||
| 12950 | ✗ | if (hAllocation->IsPersistentMap()) | |
| 12951 | { | ||
| 12952 | ✗ | pBlock->Unmap(m_hAllocator, 1); | |
| 12953 | } | ||
| 12954 | |||
| 12955 | ✗ | pBlock->m_pMetadata->Free(hAllocation); | |
| 12956 | VMA_HEAVY_ASSERT(pBlock->Validate()); | ||
| 12957 | |||
| 12958 | VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex); | ||
| 12959 | |||
| 12960 | ✗ | const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount; | |
| 12961 | // pBlock became empty after this deallocation. | ||
| 12962 | ✗ | if (pBlock->m_pMetadata->IsEmpty()) | |
| 12963 | { | ||
| 12964 | // Already has empty block. We don't want to have two, so delete this one. | ||
| 12965 | ✗ | if ((m_HasEmptyBlock || budgetExceeded) && canDeleteBlock) | |
| 12966 | { | ||
| 12967 | ✗ | pBlockToDelete = pBlock; | |
| 12968 | ✗ | Remove(pBlock); | |
| 12969 | } | ||
| 12970 | // else: We now have an empty block - leave it. | ||
| 12971 | } | ||
| 12972 | // pBlock didn't become empty, but we have another empty block - find and free that one. | ||
| 12973 | // (This is optional, heuristics.) | ||
| 12974 | ✗ | else if (m_HasEmptyBlock && canDeleteBlock) | |
| 12975 | { | ||
| 12976 | ✗ | VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back(); | |
| 12977 | ✗ | if (pLastBlock->m_pMetadata->IsEmpty()) | |
| 12978 | { | ||
| 12979 | ✗ | pBlockToDelete = pLastBlock; | |
| 12980 | ✗ | m_Blocks.pop_back(); | |
| 12981 | } | ||
| 12982 | } | ||
| 12983 | |||
| 12984 | ✗ | UpdateHasEmptyBlock(); | |
| 12985 | ✗ | IncrementallySortBlocks(); | |
| 12986 | ✗ | } | |
| 12987 | |||
| 12988 | // Destruction of a free block. Deferred until this point, outside of mutex | ||
| 12989 | // lock, for performance reason. | ||
| 12990 | ✗ | if (pBlockToDelete != VMA_NULL) | |
| 12991 | { | ||
| 12992 | VMA_DEBUG_LOG(" Deleted empty block"); | ||
| 12993 | ✗ | pBlockToDelete->Destroy(m_hAllocator); | |
| 12994 | ✗ | vma_delete(m_hAllocator, pBlockToDelete); | |
| 12995 | } | ||
| 12996 | ✗ | } | |
| 12997 | |||
| 12998 | VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const | ||
| 12999 | { | ||
| 13000 | ✗ | VkDeviceSize result = 0; | |
| 13001 | ✗ | for (size_t i = m_Blocks.size(); i--; ) | |
| 13002 | { | ||
| 13003 | ✗ | result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize()); | |
| 13004 | ✗ | if (result >= m_PreferredBlockSize) | |
| 13005 | { | ||
| 13006 | ✗ | break; | |
| 13007 | } | ||
| 13008 | } | ||
| 13009 | ✗ | return result; | |
| 13010 | } | ||
| 13011 | |||
| 13012 | void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock) | ||
| 13013 | { | ||
| 13014 | ✗ | for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) | |
| 13015 | { | ||
| 13016 | ✗ | if (m_Blocks[blockIndex] == pBlock) | |
| 13017 | { | ||
| 13018 | ✗ | VmaVectorRemove(m_Blocks, blockIndex); | |
| 13019 | ✗ | return; | |
| 13020 | } | ||
| 13021 | } | ||
| 13022 | ✗ | VMA_ASSERT(0); | |
| 13023 | } | ||
| 13024 | |||
| 13025 | void VmaBlockVector::IncrementallySortBlocks() | ||
| 13026 | { | ||
| 13027 | ✗ | if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) | |
| 13028 | { | ||
| 13029 | // Bubble sort only until first swap. | ||
| 13030 | ✗ | for (size_t i = 1; i < m_Blocks.size(); ++i) | |
| 13031 | { | ||
| 13032 | ✗ | if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) | |
| 13033 | { | ||
| 13034 | ✗ | VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]); | |
| 13035 | ✗ | return; | |
| 13036 | } | ||
| 13037 | } | ||
| 13038 | } | ||
| 13039 | } | ||
| 13040 | |||
| 13041 | VkResult VmaBlockVector::AllocateFromBlock( | ||
| 13042 | VmaDeviceMemoryBlock* pBlock, | ||
| 13043 | uint32_t currentFrameIndex, | ||
| 13044 | VkDeviceSize size, | ||
| 13045 | VkDeviceSize alignment, | ||
| 13046 | VmaAllocationCreateFlags allocFlags, | ||
| 13047 | void* pUserData, | ||
| 13048 | VmaSuballocationType suballocType, | ||
| 13049 | uint32_t strategy, | ||
| 13050 | VmaAllocation* pAllocation) | ||
| 13051 | { | ||
| 13052 | ✗ | VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0); | |
| 13053 | ✗ | const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; | |
| 13054 | ✗ | const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; | |
| 13055 | ✗ | const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; | |
| 13056 | |||
| 13057 | ✗ | VmaAllocationRequest currRequest = {}; | |
| 13058 | ✗ | if (pBlock->m_pMetadata->CreateAllocationRequest( | |
| 13059 | currentFrameIndex, | ||
| 13060 | ✗ | m_FrameInUseCount, | |
| 13061 | ✗ | m_BufferImageGranularity, | |
| 13062 | size, | ||
| 13063 | alignment, | ||
| 13064 | isUpperAddress, | ||
| 13065 | suballocType, | ||
| 13066 | false, // canMakeOtherLost | ||
| 13067 | strategy, | ||
| 13068 | &currRequest)) | ||
| 13069 | { | ||
| 13070 | // Allocate from pCurrBlock. | ||
| 13071 | ✗ | VMA_ASSERT(currRequest.itemsToMakeLostCount == 0); | |
| 13072 | |||
| 13073 | ✗ | if (mapped) | |
| 13074 | { | ||
| 13075 | ✗ | VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL); | |
| 13076 | ✗ | if (res != VK_SUCCESS) | |
| 13077 | { | ||
| 13078 | ✗ | return res; | |
| 13079 | } | ||
| 13080 | } | ||
| 13081 | |||
| 13082 | ✗ | *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(currentFrameIndex, isUserDataString); | |
| 13083 | ✗ | pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, *pAllocation); | |
| 13084 | ✗ | UpdateHasEmptyBlock(); | |
| 13085 | ✗ | (*pAllocation)->InitBlockAllocation( | |
| 13086 | pBlock, | ||
| 13087 | currRequest.offset, | ||
| 13088 | alignment, | ||
| 13089 | size, | ||
| 13090 | ✗ | m_MemoryTypeIndex, | |
| 13091 | suballocType, | ||
| 13092 | mapped, | ||
| 13093 | ✗ | (allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); | |
| 13094 | VMA_HEAVY_ASSERT(pBlock->Validate()); | ||
| 13095 | ✗ | (*pAllocation)->SetUserData(m_hAllocator, pUserData); | |
| 13096 | ✗ | m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size); | |
| 13097 | if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) | ||
| 13098 | { | ||
| 13099 | m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); | ||
| 13100 | } | ||
| 13101 | ✗ | if (IsCorruptionDetectionEnabled()) | |
| 13102 | { | ||
| 13103 | ✗ | VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size); | |
| 13104 | ✗ | VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); | |
| 13105 | } | ||
| 13106 | ✗ | return VK_SUCCESS; | |
| 13107 | } | ||
| 13108 | ✗ | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | |
| 13109 | } | ||
| 13110 | |||
| 13111 | VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex) | ||
| 13112 | { | ||
| 13113 | ✗ | VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; | |
| 13114 | ✗ | allocInfo.memoryTypeIndex = m_MemoryTypeIndex; | |
| 13115 | ✗ | allocInfo.allocationSize = blockSize; | |
| 13116 | |||
| 13117 | #if VMA_BUFFER_DEVICE_ADDRESS | ||
| 13118 | // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature. | ||
| 13119 | ✗ | VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; | |
| 13120 | ✗ | if (m_hAllocator->m_UseKhrBufferDeviceAddress) | |
| 13121 | { | ||
| 13122 | ✗ | allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; | |
| 13123 | ✗ | VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); | |
| 13124 | } | ||
| 13125 | #endif // #if VMA_BUFFER_DEVICE_ADDRESS | ||
| 13126 | |||
| 13127 | ✗ | VkDeviceMemory mem = VK_NULL_HANDLE; | |
| 13128 | ✗ | VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem); | |
| 13129 | ✗ | if (res < 0) | |
| 13130 | { | ||
| 13131 | ✗ | return res; | |
| 13132 | } | ||
| 13133 | |||
| 13134 | // New VkDeviceMemory successfully created. | ||
| 13135 | |||
| 13136 | // Create new Allocation for it. | ||
| 13137 | ✗ | VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator); | |
| 13138 | ✗ | pBlock->Init( | |
| 13139 | ✗ | m_hAllocator, | |
| 13140 | ✗ | m_hParentPool, | |
| 13141 | ✗ | m_MemoryTypeIndex, | |
| 13142 | mem, | ||
| 13143 | allocInfo.allocationSize, | ||
| 13144 | ✗ | m_NextBlockId++, | |
| 13145 | ✗ | m_Algorithm); | |
| 13146 | |||
| 13147 | ✗ | m_Blocks.push_back(pBlock); | |
| 13148 | ✗ | if (pNewBlockIndex != VMA_NULL) | |
| 13149 | { | ||
| 13150 | ✗ | *pNewBlockIndex = m_Blocks.size() - 1; | |
| 13151 | } | ||
| 13152 | |||
| 13153 | ✗ | return VK_SUCCESS; | |
| 13154 | } | ||
| 13155 | |||
| 13156 | void VmaBlockVector::ApplyDefragmentationMovesCpu( | ||
| 13157 | class VmaBlockVectorDefragmentationContext* pDefragCtx, | ||
| 13158 | const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves) | ||
| 13159 | { | ||
| 13160 | ✗ | const size_t blockCount = m_Blocks.size(); | |
| 13161 | ✗ | const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex); | |
| 13162 | |||
| 13163 | enum BLOCK_FLAG | ||
| 13164 | { | ||
| 13165 | BLOCK_FLAG_USED = 0x00000001, | ||
| 13166 | BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002, | ||
| 13167 | }; | ||
| 13168 | |||
| 13169 | struct BlockInfo | ||
| 13170 | { | ||
| 13171 | uint32_t flags; | ||
| 13172 | void* pMappedData; | ||
| 13173 | }; | ||
| 13174 | VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> > | ||
| 13175 | ✗ | blockInfo(blockCount, BlockInfo(), VmaStlAllocator<BlockInfo>(m_hAllocator->GetAllocationCallbacks())); | |
| 13176 | ✗ | memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo)); | |
| 13177 | |||
| 13178 | // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. | ||
| 13179 | ✗ | const size_t moveCount = moves.size(); | |
| 13180 | ✗ | for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) | |
| 13181 | { | ||
| 13182 | ✗ | const VmaDefragmentationMove& move = moves[moveIndex]; | |
| 13183 | ✗ | blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED; | |
| 13184 | ✗ | blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED; | |
| 13185 | } | ||
| 13186 | |||
| 13187 | ✗ | VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); | |
| 13188 | |||
| 13189 | // Go over all blocks. Get mapped pointer or map if necessary. | ||
| 13190 | ✗ | for (size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) | |
| 13191 | { | ||
| 13192 | ✗ | BlockInfo& currBlockInfo = blockInfo[blockIndex]; | |
| 13193 | ✗ | VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; | |
| 13194 | ✗ | if ((currBlockInfo.flags & BLOCK_FLAG_USED) != 0) | |
| 13195 | { | ||
| 13196 | ✗ | currBlockInfo.pMappedData = pBlock->GetMappedData(); | |
| 13197 | // It is not originally mapped - map it. | ||
| 13198 | ✗ | if (currBlockInfo.pMappedData == VMA_NULL) | |
| 13199 | { | ||
| 13200 | ✗ | pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData); | |
| 13201 | ✗ | if (pDefragCtx->res == VK_SUCCESS) | |
| 13202 | { | ||
| 13203 | ✗ | currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION; | |
| 13204 | } | ||
| 13205 | } | ||
| 13206 | } | ||
| 13207 | } | ||
| 13208 | |||
| 13209 | // Go over all moves. Do actual data transfer. | ||
| 13210 | ✗ | if (pDefragCtx->res == VK_SUCCESS) | |
| 13211 | { | ||
| 13212 | ✗ | const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; | |
| 13213 | ✗ | VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE }; | |
| 13214 | |||
| 13215 | ✗ | for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) | |
| 13216 | { | ||
| 13217 | ✗ | const VmaDefragmentationMove& move = moves[moveIndex]; | |
| 13218 | |||
| 13219 | ✗ | const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex]; | |
| 13220 | ✗ | const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex]; | |
| 13221 | |||
| 13222 | ✗ | VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData); | |
| 13223 | |||
| 13224 | // Invalidate source. | ||
| 13225 | ✗ | if (isNonCoherent) | |
| 13226 | { | ||
| 13227 | ✗ | VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex]; | |
| 13228 | ✗ | memRange.memory = pSrcBlock->GetDeviceMemory(); | |
| 13229 | ✗ | memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize); | |
| 13230 | ✗ | memRange.size = VMA_MIN( | |
| 13231 | VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize), | ||
| 13232 | pSrcBlock->m_pMetadata->GetSize() - memRange.offset); | ||
| 13233 | ✗ | (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); | |
| 13234 | } | ||
| 13235 | |||
| 13236 | // THE PLACE WHERE ACTUAL DATA COPY HAPPENS. | ||
| 13237 | ✗ | memmove( | |
| 13238 | ✗ | reinterpret_cast<char*>(dstBlockInfo.pMappedData) + move.dstOffset, | |
| 13239 | ✗ | reinterpret_cast<char*>(srcBlockInfo.pMappedData) + move.srcOffset, | |
| 13240 | ✗ | static_cast<size_t>(move.size)); | |
| 13241 | |||
| 13242 | ✗ | if (IsCorruptionDetectionEnabled()) | |
| 13243 | { | ||
| 13244 | ✗ | VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN); | |
| 13245 | ✗ | VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size); | |
| 13246 | } | ||
| 13247 | |||
| 13248 | // Flush destination. | ||
| 13249 | ✗ | if (isNonCoherent) | |
| 13250 | { | ||
| 13251 | ✗ | VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex]; | |
| 13252 | ✗ | memRange.memory = pDstBlock->GetDeviceMemory(); | |
| 13253 | ✗ | memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize); | |
| 13254 | ✗ | memRange.size = VMA_MIN( | |
| 13255 | VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize), | ||
| 13256 | pDstBlock->m_pMetadata->GetSize() - memRange.offset); | ||
| 13257 | ✗ | (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); | |
| 13258 | } | ||
| 13259 | } | ||
| 13260 | } | ||
| 13261 | |||
| 13262 | // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation. | ||
| 13263 | // Regardless of pCtx->res == VK_SUCCESS. | ||
| 13264 | ✗ | for (size_t blockIndex = blockCount; blockIndex--; ) | |
| 13265 | { | ||
| 13266 | ✗ | const BlockInfo& currBlockInfo = blockInfo[blockIndex]; | |
| 13267 | ✗ | if ((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0) | |
| 13268 | { | ||
| 13269 | ✗ | VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; | |
| 13270 | ✗ | pBlock->Unmap(m_hAllocator, 1); | |
| 13271 | } | ||
| 13272 | } | ||
| 13273 | ✗ | } | |
| 13274 | |||
| 13275 | void VmaBlockVector::ApplyDefragmentationMovesGpu( | ||
| 13276 | class VmaBlockVectorDefragmentationContext* pDefragCtx, | ||
| 13277 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, | ||
| 13278 | VkCommandBuffer commandBuffer) | ||
| 13279 | { | ||
| 13280 | ✗ | const size_t blockCount = m_Blocks.size(); | |
| 13281 | |||
| 13282 | ✗ | pDefragCtx->blockContexts.resize(blockCount); | |
| 13283 | ✗ | memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext)); | |
| 13284 | |||
| 13285 | // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. | ||
| 13286 | ✗ | const size_t moveCount = moves.size(); | |
| 13287 | ✗ | for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) | |
| 13288 | { | ||
| 13289 | ✗ | const VmaDefragmentationMove& move = moves[moveIndex]; | |
| 13290 | |||
| 13291 | //if(move.type == VMA_ALLOCATION_TYPE_UNKNOWN) | ||
| 13292 | { | ||
| 13293 | // Old school move still require us to map the whole block | ||
| 13294 | ✗ | pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; | |
| 13295 | ✗ | pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; | |
| 13296 | } | ||
| 13297 | } | ||
| 13298 | |||
| 13299 | ✗ | VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); | |
| 13300 | |||
| 13301 | // Go over all blocks. Create and bind buffer for whole block if necessary. | ||
| 13302 | { | ||
| 13303 | VkBufferCreateInfo bufCreateInfo; | ||
| 13304 | ✗ | VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo); | |
| 13305 | |||
| 13306 | ✗ | for (size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) | |
| 13307 | { | ||
| 13308 | ✗ | VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex]; | |
| 13309 | ✗ | VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; | |
| 13310 | ✗ | if ((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0) | |
| 13311 | { | ||
| 13312 | ✗ | bufCreateInfo.size = pBlock->m_pMetadata->GetSize(); | |
| 13313 | ✗ | pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)( | |
| 13314 | ✗ | m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer); | |
| 13315 | ✗ | if (pDefragCtx->res == VK_SUCCESS) | |
| 13316 | { | ||
| 13317 | ✗ | pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)( | |
| 13318 | ✗ | m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0); | |
| 13319 | } | ||
| 13320 | } | ||
| 13321 | } | ||
| 13322 | } | ||
| 13323 | |||
| 13324 | // Go over all moves. Post data transfer commands to command buffer. | ||
| 13325 | ✗ | if (pDefragCtx->res == VK_SUCCESS) | |
| 13326 | { | ||
| 13327 | ✗ | for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) | |
| 13328 | { | ||
| 13329 | ✗ | const VmaDefragmentationMove& move = moves[moveIndex]; | |
| 13330 | |||
| 13331 | ✗ | const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex]; | |
| 13332 | ✗ | const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex]; | |
| 13333 | |||
| 13334 | ✗ | VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer); | |
| 13335 | |||
| 13336 | VkBufferCopy region = { | ||
| 13337 | ✗ | move.srcOffset, | |
| 13338 | ✗ | move.dstOffset, | |
| 13339 | ✗ | move.size }; | |
| 13340 | ✗ | (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)( | |
| 13341 | ✗ | commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, ®ion); | |
| 13342 | } | ||
| 13343 | } | ||
| 13344 | |||
| 13345 | // Save buffers to defrag context for later destruction. | ||
| 13346 | ✗ | if (pDefragCtx->res == VK_SUCCESS && moveCount > 0) | |
| 13347 | { | ||
| 13348 | ✗ | pDefragCtx->res = VK_NOT_READY; | |
| 13349 | } | ||
| 13350 | ✗ | } | |
| 13351 | |||
| 13352 | void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats) | ||
| 13353 | { | ||
| 13354 | ✗ | for (size_t blockIndex = m_Blocks.size(); blockIndex--; ) | |
| 13355 | { | ||
| 13356 | ✗ | VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; | |
| 13357 | ✗ | if (pBlock->m_pMetadata->IsEmpty()) | |
| 13358 | { | ||
| 13359 | ✗ | if (m_Blocks.size() > m_MinBlockCount) | |
| 13360 | { | ||
| 13361 | ✗ | if (pDefragmentationStats != VMA_NULL) | |
| 13362 | { | ||
| 13363 | ✗ | ++pDefragmentationStats->deviceMemoryBlocksFreed; | |
| 13364 | ✗ | pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize(); | |
| 13365 | } | ||
| 13366 | |||
| 13367 | ✗ | VmaVectorRemove(m_Blocks, blockIndex); | |
| 13368 | ✗ | pBlock->Destroy(m_hAllocator); | |
| 13369 | ✗ | vma_delete(m_hAllocator, pBlock); | |
| 13370 | } | ||
| 13371 | else | ||
| 13372 | { | ||
| 13373 | ✗ | break; | |
| 13374 | } | ||
| 13375 | } | ||
| 13376 | } | ||
| 13377 | ✗ | UpdateHasEmptyBlock(); | |
| 13378 | ✗ | } | |
| 13379 | |||
| 13380 | void VmaBlockVector::UpdateHasEmptyBlock() | ||
| 13381 | { | ||
| 13382 | ✗ | m_HasEmptyBlock = false; | |
| 13383 | ✗ | for (size_t index = 0, count = m_Blocks.size(); index < count; ++index) | |
| 13384 | { | ||
| 13385 | ✗ | VmaDeviceMemoryBlock* const pBlock = m_Blocks[index]; | |
| 13386 | ✗ | if (pBlock->m_pMetadata->IsEmpty()) | |
| 13387 | { | ||
| 13388 | ✗ | m_HasEmptyBlock = true; | |
| 13389 | ✗ | break; | |
| 13390 | } | ||
| 13391 | } | ||
| 13392 | ✗ | } | |
| 13393 | |||
| 13394 | #if VMA_STATS_STRING_ENABLED | ||
| 13395 | |||
| 13396 | void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json) | ||
| 13397 | { | ||
| 13398 | ✗ | VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); | |
| 13399 | |||
| 13400 | ✗ | json.BeginObject(); | |
| 13401 | |||
| 13402 | ✗ | if (IsCustomPool()) | |
| 13403 | { | ||
| 13404 | ✗ | const char* poolName = m_hParentPool->GetName(); | |
| 13405 | ✗ | if (poolName != VMA_NULL && poolName[0] != '\0') | |
| 13406 | { | ||
| 13407 | ✗ | json.WriteString("Name"); | |
| 13408 | ✗ | json.WriteString(poolName); | |
| 13409 | } | ||
| 13410 | |||
| 13411 | ✗ | json.WriteString("MemoryTypeIndex"); | |
| 13412 | ✗ | json.WriteNumber(m_MemoryTypeIndex); | |
| 13413 | |||
| 13414 | ✗ | json.WriteString("BlockSize"); | |
| 13415 | ✗ | json.WriteNumber(m_PreferredBlockSize); | |
| 13416 | |||
| 13417 | ✗ | json.WriteString("BlockCount"); | |
| 13418 | ✗ | json.BeginObject(true); | |
| 13419 | ✗ | if (m_MinBlockCount > 0) | |
| 13420 | { | ||
| 13421 | ✗ | json.WriteString("Min"); | |
| 13422 | ✗ | json.WriteNumber((uint64_t)m_MinBlockCount); | |
| 13423 | } | ||
| 13424 | ✗ | if (m_MaxBlockCount < SIZE_MAX) | |
| 13425 | { | ||
| 13426 | ✗ | json.WriteString("Max"); | |
| 13427 | ✗ | json.WriteNumber((uint64_t)m_MaxBlockCount); | |
| 13428 | } | ||
| 13429 | ✗ | json.WriteString("Cur"); | |
| 13430 | ✗ | json.WriteNumber((uint64_t)m_Blocks.size()); | |
| 13431 | ✗ | json.EndObject(); | |
| 13432 | |||
| 13433 | ✗ | if (m_FrameInUseCount > 0) | |
| 13434 | { | ||
| 13435 | ✗ | json.WriteString("FrameInUseCount"); | |
| 13436 | ✗ | json.WriteNumber(m_FrameInUseCount); | |
| 13437 | } | ||
| 13438 | |||
| 13439 | ✗ | if (m_Algorithm != 0) | |
| 13440 | { | ||
| 13441 | ✗ | json.WriteString("Algorithm"); | |
| 13442 | ✗ | json.WriteString(VmaAlgorithmToStr(m_Algorithm)); | |
| 13443 | } | ||
| 13444 | } | ||
| 13445 | else | ||
| 13446 | { | ||
| 13447 | ✗ | json.WriteString("PreferredBlockSize"); | |
| 13448 | ✗ | json.WriteNumber(m_PreferredBlockSize); | |
| 13449 | } | ||
| 13450 | |||
| 13451 | ✗ | json.WriteString("Blocks"); | |
| 13452 | ✗ | json.BeginObject(); | |
| 13453 | ✗ | for (size_t i = 0; i < m_Blocks.size(); ++i) | |
| 13454 | { | ||
| 13455 | ✗ | json.BeginString(); | |
| 13456 | ✗ | json.ContinueString(m_Blocks[i]->GetId()); | |
| 13457 | ✗ | json.EndString(); | |
| 13458 | |||
| 13459 | ✗ | m_Blocks[i]->m_pMetadata->PrintDetailedMap(json); | |
| 13460 | } | ||
| 13461 | ✗ | json.EndObject(); | |
| 13462 | |||
| 13463 | ✗ | json.EndObject(); | |
| 13464 | ✗ | } | |
| 13465 | |||
| 13466 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 13467 | |||
| 13468 | void VmaBlockVector::Defragment( | ||
| 13469 | class VmaBlockVectorDefragmentationContext* pCtx, | ||
| 13470 | VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, | ||
| 13471 | VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, | ||
| 13472 | VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, | ||
| 13473 | VkCommandBuffer commandBuffer) | ||
| 13474 | { | ||
| 13475 | ✗ | pCtx->res = VK_SUCCESS; | |
| 13476 | |||
| 13477 | ✗ | const VkMemoryPropertyFlags memPropFlags = | |
| 13478 | ✗ | m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags; | |
| 13479 | ✗ | const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; | |
| 13480 | |||
| 13481 | ✗ | const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 && | |
| 13482 | isHostVisible; | ||
| 13483 | ✗ | const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 && | |
| 13484 | ✗ | !IsCorruptionDetectionEnabled() && | |
| 13485 | ✗ | ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0; | |
| 13486 | |||
| 13487 | // There are options to defragment this memory type. | ||
| 13488 | ✗ | if (canDefragmentOnCpu || canDefragmentOnGpu) | |
| 13489 | { | ||
| 13490 | bool defragmentOnGpu; | ||
| 13491 | // There is only one option to defragment this memory type. | ||
| 13492 | ✗ | if (canDefragmentOnGpu != canDefragmentOnCpu) | |
| 13493 | { | ||
| 13494 | ✗ | defragmentOnGpu = canDefragmentOnGpu; | |
| 13495 | } | ||
| 13496 | // Both options are available: Heuristics to choose the best one. | ||
| 13497 | else | ||
| 13498 | { | ||
| 13499 | ✗ | defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 || | |
| 13500 | ✗ | m_hAllocator->IsIntegratedGpu(); | |
| 13501 | } | ||
| 13502 | |||
| 13503 | ✗ | bool overlappingMoveSupported = !defragmentOnGpu; | |
| 13504 | |||
| 13505 | ✗ | if (m_hAllocator->m_UseMutex) | |
| 13506 | { | ||
| 13507 | ✗ | if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) | |
| 13508 | { | ||
| 13509 | ✗ | if (!m_Mutex.TryLockWrite()) | |
| 13510 | { | ||
| 13511 | ✗ | pCtx->res = VK_ERROR_INITIALIZATION_FAILED; | |
| 13512 | ✗ | return; | |
| 13513 | } | ||
| 13514 | } | ||
| 13515 | else | ||
| 13516 | { | ||
| 13517 | ✗ | m_Mutex.LockWrite(); | |
| 13518 | ✗ | pCtx->mutexLocked = true; | |
| 13519 | } | ||
| 13520 | } | ||
| 13521 | |||
| 13522 | ✗ | pCtx->Begin(overlappingMoveSupported, flags); | |
| 13523 | |||
| 13524 | // Defragment. | ||
| 13525 | |||
| 13526 | ✗ | const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove; | |
| 13527 | ✗ | const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove; | |
| 13528 | ✗ | pCtx->res = pCtx->GetAlgorithm()->Defragment(pCtx->defragmentationMoves, maxBytesToMove, maxAllocationsToMove, flags); | |
| 13529 | |||
| 13530 | // Accumulate statistics. | ||
| 13531 | ✗ | if (pStats != VMA_NULL) | |
| 13532 | { | ||
| 13533 | ✗ | const VkDeviceSize bytesMoved = pCtx->GetAlgorithm()->GetBytesMoved(); | |
| 13534 | ✗ | const uint32_t allocationsMoved = pCtx->GetAlgorithm()->GetAllocationsMoved(); | |
| 13535 | ✗ | pStats->bytesMoved += bytesMoved; | |
| 13536 | ✗ | pStats->allocationsMoved += allocationsMoved; | |
| 13537 | ✗ | VMA_ASSERT(bytesMoved <= maxBytesToMove); | |
| 13538 | ✗ | VMA_ASSERT(allocationsMoved <= maxAllocationsToMove); | |
| 13539 | ✗ | if (defragmentOnGpu) | |
| 13540 | { | ||
| 13541 | ✗ | maxGpuBytesToMove -= bytesMoved; | |
| 13542 | ✗ | maxGpuAllocationsToMove -= allocationsMoved; | |
| 13543 | } | ||
| 13544 | else | ||
| 13545 | { | ||
| 13546 | ✗ | maxCpuBytesToMove -= bytesMoved; | |
| 13547 | ✗ | maxCpuAllocationsToMove -= allocationsMoved; | |
| 13548 | } | ||
| 13549 | } | ||
| 13550 | |||
| 13551 | ✗ | if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) | |
| 13552 | { | ||
| 13553 | ✗ | if (m_hAllocator->m_UseMutex) | |
| 13554 | ✗ | m_Mutex.UnlockWrite(); | |
| 13555 | |||
| 13556 | ✗ | if (pCtx->res >= VK_SUCCESS && !pCtx->defragmentationMoves.empty()) | |
| 13557 | ✗ | pCtx->res = VK_NOT_READY; | |
| 13558 | |||
| 13559 | ✗ | return; | |
| 13560 | } | ||
| 13561 | |||
| 13562 | ✗ | if (pCtx->res >= VK_SUCCESS) | |
| 13563 | { | ||
| 13564 | ✗ | if (defragmentOnGpu) | |
| 13565 | { | ||
| 13566 | ✗ | ApplyDefragmentationMovesGpu(pCtx, pCtx->defragmentationMoves, commandBuffer); | |
| 13567 | } | ||
| 13568 | else | ||
| 13569 | { | ||
| 13570 | ✗ | ApplyDefragmentationMovesCpu(pCtx, pCtx->defragmentationMoves); | |
| 13571 | } | ||
| 13572 | } | ||
| 13573 | } | ||
| 13574 | } | ||
| 13575 | |||
| 13576 | void VmaBlockVector::DefragmentationEnd( | ||
| 13577 | class VmaBlockVectorDefragmentationContext* pCtx, | ||
| 13578 | uint32_t flags, | ||
| 13579 | VmaDefragmentationStats* pStats) | ||
| 13580 | { | ||
| 13581 | ✗ | if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL && m_hAllocator->m_UseMutex) | |
| 13582 | { | ||
| 13583 | ✗ | VMA_ASSERT(pCtx->mutexLocked == false); | |
| 13584 | |||
| 13585 | // Incremental defragmentation doesn't hold the lock, so when we enter here we don't actually have any | ||
| 13586 | // lock protecting us. Since we mutate state here, we have to take the lock out now | ||
| 13587 | ✗ | m_Mutex.LockWrite(); | |
| 13588 | ✗ | pCtx->mutexLocked = true; | |
| 13589 | } | ||
| 13590 | |||
| 13591 | // If the mutex isn't locked we didn't do any work and there is nothing to delete. | ||
| 13592 | ✗ | if (pCtx->mutexLocked || !m_hAllocator->m_UseMutex) | |
| 13593 | { | ||
| 13594 | // Destroy buffers. | ||
| 13595 | ✗ | for (size_t blockIndex = pCtx->blockContexts.size(); blockIndex--;) | |
| 13596 | { | ||
| 13597 | ✗ | VmaBlockDefragmentationContext& blockCtx = pCtx->blockContexts[blockIndex]; | |
| 13598 | ✗ | if (blockCtx.hBuffer) | |
| 13599 | { | ||
| 13600 | ✗ | (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)(m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks()); | |
| 13601 | } | ||
| 13602 | } | ||
| 13603 | |||
| 13604 | ✗ | if (pCtx->res >= VK_SUCCESS) | |
| 13605 | { | ||
| 13606 | ✗ | FreeEmptyBlocks(pStats); | |
| 13607 | } | ||
| 13608 | } | ||
| 13609 | |||
| 13610 | ✗ | if (pCtx->mutexLocked) | |
| 13611 | { | ||
| 13612 | ✗ | VMA_ASSERT(m_hAllocator->m_UseMutex); | |
| 13613 | ✗ | m_Mutex.UnlockWrite(); | |
| 13614 | } | ||
| 13615 | ✗ | } | |
| 13616 | |||
| 13617 | uint32_t VmaBlockVector::ProcessDefragmentations( | ||
| 13618 | class VmaBlockVectorDefragmentationContext* pCtx, | ||
| 13619 | VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves) | ||
| 13620 | { | ||
| 13621 | ✗ | VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); | |
| 13622 | |||
| 13623 | ✗ | const uint32_t moveCount = std::min(uint32_t(pCtx->defragmentationMoves.size()) - pCtx->defragmentationMovesProcessed, maxMoves); | |
| 13624 | |||
| 13625 | ✗ | for (uint32_t i = 0; i < moveCount; ++i) | |
| 13626 | { | ||
| 13627 | ✗ | VmaDefragmentationMove& move = pCtx->defragmentationMoves[pCtx->defragmentationMovesProcessed + i]; | |
| 13628 | |||
| 13629 | ✗ | pMove->allocation = move.hAllocation; | |
| 13630 | ✗ | pMove->memory = move.pDstBlock->GetDeviceMemory(); | |
| 13631 | ✗ | pMove->offset = move.dstOffset; | |
| 13632 | |||
| 13633 | ✗ | ++pMove; | |
| 13634 | } | ||
| 13635 | |||
| 13636 | ✗ | pCtx->defragmentationMovesProcessed += moveCount; | |
| 13637 | |||
| 13638 | ✗ | return moveCount; | |
| 13639 | ✗ | } | |
| 13640 | |||
| 13641 | void VmaBlockVector::CommitDefragmentations( | ||
| 13642 | class VmaBlockVectorDefragmentationContext* pCtx, | ||
| 13643 | VmaDefragmentationStats* pStats) | ||
| 13644 | { | ||
| 13645 | ✗ | VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); | |
| 13646 | |||
| 13647 | ✗ | for (uint32_t i = pCtx->defragmentationMovesCommitted; i < pCtx->defragmentationMovesProcessed; ++i) | |
| 13648 | { | ||
| 13649 | ✗ | const VmaDefragmentationMove& move = pCtx->defragmentationMoves[i]; | |
| 13650 | |||
| 13651 | ✗ | move.pSrcBlock->m_pMetadata->FreeAtOffset(move.srcOffset); | |
| 13652 | ✗ | move.hAllocation->ChangeBlockAllocation(m_hAllocator, move.pDstBlock, move.dstOffset); | |
| 13653 | } | ||
| 13654 | |||
| 13655 | ✗ | pCtx->defragmentationMovesCommitted = pCtx->defragmentationMovesProcessed; | |
| 13656 | ✗ | FreeEmptyBlocks(pStats); | |
| 13657 | ✗ | } | |
| 13658 | |||
| 13659 | size_t VmaBlockVector::CalcAllocationCount() const | ||
| 13660 | { | ||
| 13661 | ✗ | size_t result = 0; | |
| 13662 | ✗ | for (size_t i = 0; i < m_Blocks.size(); ++i) | |
| 13663 | { | ||
| 13664 | ✗ | result += m_Blocks[i]->m_pMetadata->GetAllocationCount(); | |
| 13665 | } | ||
| 13666 | ✗ | return result; | |
| 13667 | } | ||
| 13668 | |||
| 13669 | bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const | ||
| 13670 | { | ||
| 13671 | ✗ | if (m_BufferImageGranularity == 1) | |
| 13672 | { | ||
| 13673 | ✗ | return false; | |
| 13674 | } | ||
| 13675 | ✗ | VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE; | |
| 13676 | ✗ | for (size_t i = 0, count = m_Blocks.size(); i < count; ++i) | |
| 13677 | { | ||
| 13678 | ✗ | VmaDeviceMemoryBlock* const pBlock = m_Blocks[i]; | |
| 13679 | ✗ | VMA_ASSERT(m_Algorithm == 0); | |
| 13680 | ✗ | VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata; | |
| 13681 | ✗ | if (pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType)) | |
| 13682 | { | ||
| 13683 | ✗ | return true; | |
| 13684 | } | ||
| 13685 | } | ||
| 13686 | ✗ | return false; | |
| 13687 | } | ||
| 13688 | |||
| 13689 | void VmaBlockVector::MakePoolAllocationsLost( | ||
| 13690 | uint32_t currentFrameIndex, | ||
| 13691 | size_t* pLostAllocationCount) | ||
| 13692 | { | ||
| 13693 | ✗ | VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); | |
| 13694 | ✗ | size_t lostAllocationCount = 0; | |
| 13695 | ✗ | for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) | |
| 13696 | { | ||
| 13697 | ✗ | VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; | |
| 13698 | ✗ | VMA_ASSERT(pBlock); | |
| 13699 | ✗ | lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount); | |
| 13700 | } | ||
| 13701 | ✗ | if (pLostAllocationCount != VMA_NULL) | |
| 13702 | { | ||
| 13703 | ✗ | *pLostAllocationCount = lostAllocationCount; | |
| 13704 | } | ||
| 13705 | ✗ | } | |
| 13706 | |||
| 13707 | VkResult VmaBlockVector::CheckCorruption() | ||
| 13708 | { | ||
| 13709 | ✗ | if (!IsCorruptionDetectionEnabled()) | |
| 13710 | { | ||
| 13711 | ✗ | return VK_ERROR_FEATURE_NOT_PRESENT; | |
| 13712 | } | ||
| 13713 | |||
| 13714 | ✗ | VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); | |
| 13715 | ✗ | for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) | |
| 13716 | { | ||
| 13717 | ✗ | VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; | |
| 13718 | ✗ | VMA_ASSERT(pBlock); | |
| 13719 | ✗ | VkResult res = pBlock->CheckCorruption(m_hAllocator); | |
| 13720 | ✗ | if (res != VK_SUCCESS) | |
| 13721 | { | ||
| 13722 | ✗ | return res; | |
| 13723 | } | ||
| 13724 | } | ||
| 13725 | ✗ | return VK_SUCCESS; | |
| 13726 | ✗ | } | |
| 13727 | |||
| 13728 | void VmaBlockVector::AddStats(VmaStats* pStats) | ||
| 13729 | { | ||
| 13730 | ✗ | const uint32_t memTypeIndex = m_MemoryTypeIndex; | |
| 13731 | ✗ | const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex); | |
| 13732 | |||
| 13733 | ✗ | VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); | |
| 13734 | |||
| 13735 | ✗ | for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) | |
| 13736 | { | ||
| 13737 | ✗ | const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; | |
| 13738 | ✗ | VMA_ASSERT(pBlock); | |
| 13739 | VMA_HEAVY_ASSERT(pBlock->Validate()); | ||
| 13740 | VmaStatInfo allocationStatInfo; | ||
| 13741 | ✗ | pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo); | |
| 13742 | ✗ | VmaAddStatInfo(pStats->total, allocationStatInfo); | |
| 13743 | ✗ | VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); | |
| 13744 | ✗ | VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); | |
| 13745 | } | ||
| 13746 | ✗ | } | |
| 13747 | |||
| 13748 | //////////////////////////////////////////////////////////////////////////////// | ||
| 13749 | // VmaDefragmentationAlgorithm_Generic members definition | ||
| 13750 | |||
| 13751 | VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic( | ||
| 13752 | VmaAllocator hAllocator, | ||
| 13753 | VmaBlockVector* pBlockVector, | ||
| 13754 | uint32_t currentFrameIndex, | ||
| 13755 | ✗ | bool overlappingMoveSupported) : | |
| 13756 | VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), | ||
| 13757 | ✗ | m_AllocationCount(0), | |
| 13758 | ✗ | m_AllAllocations(false), | |
| 13759 | ✗ | m_BytesMoved(0), | |
| 13760 | ✗ | m_AllocationsMoved(0), | |
| 13761 | ✗ | m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks())) | |
| 13762 | { | ||
| 13763 | // Create block info for each block. | ||
| 13764 | ✗ | const size_t blockCount = m_pBlockVector->m_Blocks.size(); | |
| 13765 | ✗ | for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) | |
| 13766 | { | ||
| 13767 | ✗ | BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks()); | |
| 13768 | ✗ | pBlockInfo->m_OriginalBlockIndex = blockIndex; | |
| 13769 | ✗ | pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex]; | |
| 13770 | ✗ | m_Blocks.push_back(pBlockInfo); | |
| 13771 | } | ||
| 13772 | |||
| 13773 | // Sort them by m_pBlock pointer value. | ||
| 13774 | ✗ | VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess()); | |
| 13775 | ✗ | } | |
| 13776 | |||
| 13777 | VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic() | ||
| 13778 | { | ||
| 13779 | ✗ | for (size_t i = m_Blocks.size(); i--; ) | |
| 13780 | { | ||
| 13781 | ✗ | vma_delete(m_hAllocator, m_Blocks[i]); | |
| 13782 | } | ||
| 13783 | ✗ | } | |
| 13784 | |||
| 13785 | void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) | ||
| 13786 | { | ||
| 13787 | // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost. | ||
| 13788 | ✗ | if (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST) | |
| 13789 | { | ||
| 13790 | ✗ | VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock(); | |
| 13791 | ✗ | BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess()); | |
| 13792 | ✗ | if (it != m_Blocks.end() && (*it)->m_pBlock == pBlock) | |
| 13793 | { | ||
| 13794 | ✗ | AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged); | |
| 13795 | ✗ | (*it)->m_Allocations.push_back(allocInfo); | |
| 13796 | } | ||
| 13797 | else | ||
| 13798 | { | ||
| 13799 | ✗ | VMA_ASSERT(0); | |
| 13800 | } | ||
| 13801 | |||
| 13802 | ✗ | ++m_AllocationCount; | |
| 13803 | } | ||
| 13804 | ✗ | } | |
| 13805 | |||
| 13806 | VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound( | ||
| 13807 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, | ||
| 13808 | VkDeviceSize maxBytesToMove, | ||
| 13809 | uint32_t maxAllocationsToMove, | ||
| 13810 | bool freeOldAllocations) | ||
| 13811 | { | ||
| 13812 | ✗ | if (m_Blocks.empty()) | |
| 13813 | { | ||
| 13814 | ✗ | return VK_SUCCESS; | |
| 13815 | } | ||
| 13816 | |||
| 13817 | // This is a choice based on research. | ||
| 13818 | // Option 1: | ||
| 13819 | ✗ | uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT; | |
| 13820 | // Option 2: | ||
| 13821 | //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT; | ||
| 13822 | // Option 3: | ||
| 13823 | //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT; | ||
| 13824 | |||
| 13825 | ✗ | size_t srcBlockMinIndex = 0; | |
| 13826 | // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations. | ||
| 13827 | /* | ||
| 13828 | if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT) | ||
| 13829 | { | ||
| 13830 | const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount(); | ||
| 13831 | if(blocksWithNonMovableCount > 0) | ||
| 13832 | { | ||
| 13833 | srcBlockMinIndex = blocksWithNonMovableCount - 1; | ||
| 13834 | } | ||
| 13835 | } | ||
| 13836 | */ | ||
| 13837 | |||
| 13838 | ✗ | size_t srcBlockIndex = m_Blocks.size() - 1; | |
| 13839 | ✗ | size_t srcAllocIndex = SIZE_MAX; | |
| 13840 | for (;;) | ||
| 13841 | { | ||
| 13842 | // 1. Find next allocation to move. | ||
| 13843 | // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source". | ||
| 13844 | // 1.2. Then start from last to first m_Allocations. | ||
| 13845 | ✗ | while (srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size()) | |
| 13846 | { | ||
| 13847 | ✗ | if (m_Blocks[srcBlockIndex]->m_Allocations.empty()) | |
| 13848 | { | ||
| 13849 | // Finished: no more allocations to process. | ||
| 13850 | ✗ | if (srcBlockIndex == srcBlockMinIndex) | |
| 13851 | { | ||
| 13852 | ✗ | return VK_SUCCESS; | |
| 13853 | } | ||
| 13854 | else | ||
| 13855 | { | ||
| 13856 | ✗ | --srcBlockIndex; | |
| 13857 | ✗ | srcAllocIndex = SIZE_MAX; | |
| 13858 | } | ||
| 13859 | } | ||
| 13860 | else | ||
| 13861 | { | ||
| 13862 | ✗ | srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1; | |
| 13863 | } | ||
| 13864 | } | ||
| 13865 | |||
| 13866 | ✗ | BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex]; | |
| 13867 | ✗ | AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex]; | |
| 13868 | |||
| 13869 | ✗ | const VkDeviceSize size = allocInfo.m_hAllocation->GetSize(); | |
| 13870 | ✗ | const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset(); | |
| 13871 | ✗ | const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment(); | |
| 13872 | ✗ | const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType(); | |
| 13873 | |||
| 13874 | // 2. Try to find new place for this allocation in preceding or current block. | ||
| 13875 | ✗ | for (size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex) | |
| 13876 | { | ||
| 13877 | ✗ | BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex]; | |
| 13878 | ✗ | VmaAllocationRequest dstAllocRequest; | |
| 13879 | ✗ | if (pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest( | |
| 13880 | ✗ | m_CurrentFrameIndex, | |
| 13881 | ✗ | m_pBlockVector->GetFrameInUseCount(), | |
| 13882 | ✗ | m_pBlockVector->GetBufferImageGranularity(), | |
| 13883 | size, | ||
| 13884 | alignment, | ||
| 13885 | false, // upperAddress | ||
| 13886 | suballocType, | ||
| 13887 | false, // canMakeOtherLost | ||
| 13888 | strategy, | ||
| 13889 | ✗ | &dstAllocRequest) && | |
| 13890 | ✗ | MoveMakesSense( | |
| 13891 | dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset)) | ||
| 13892 | { | ||
| 13893 | ✗ | VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0); | |
| 13894 | |||
| 13895 | // Reached limit on number of allocations or bytes to move. | ||
| 13896 | ✗ | if ((m_AllocationsMoved + 1 > maxAllocationsToMove) || | |
| 13897 | ✗ | (m_BytesMoved + size > maxBytesToMove)) | |
| 13898 | { | ||
| 13899 | ✗ | return VK_SUCCESS; | |
| 13900 | } | ||
| 13901 | |||
| 13902 | ✗ | VmaDefragmentationMove move = {}; | |
| 13903 | ✗ | move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex; | |
| 13904 | ✗ | move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex; | |
| 13905 | ✗ | move.srcOffset = srcOffset; | |
| 13906 | ✗ | move.dstOffset = dstAllocRequest.offset; | |
| 13907 | ✗ | move.size = size; | |
| 13908 | ✗ | move.hAllocation = allocInfo.m_hAllocation; | |
| 13909 | ✗ | move.pSrcBlock = pSrcBlockInfo->m_pBlock; | |
| 13910 | ✗ | move.pDstBlock = pDstBlockInfo->m_pBlock; | |
| 13911 | |||
| 13912 | ✗ | moves.push_back(move); | |
| 13913 | |||
| 13914 | ✗ | pDstBlockInfo->m_pBlock->m_pMetadata->Alloc( | |
| 13915 | dstAllocRequest, | ||
| 13916 | suballocType, | ||
| 13917 | size, | ||
| 13918 | allocInfo.m_hAllocation); | ||
| 13919 | |||
| 13920 | ✗ | if (freeOldAllocations) | |
| 13921 | { | ||
| 13922 | ✗ | pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset); | |
| 13923 | ✗ | allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset); | |
| 13924 | } | ||
| 13925 | |||
| 13926 | ✗ | if (allocInfo.m_pChanged != VMA_NULL) | |
| 13927 | { | ||
| 13928 | ✗ | *allocInfo.m_pChanged = VK_TRUE; | |
| 13929 | } | ||
| 13930 | |||
| 13931 | ✗ | ++m_AllocationsMoved; | |
| 13932 | ✗ | m_BytesMoved += size; | |
| 13933 | |||
| 13934 | ✗ | VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex); | |
| 13935 | |||
| 13936 | ✗ | break; | |
| 13937 | } | ||
| 13938 | } | ||
| 13939 | |||
| 13940 | // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round. | ||
| 13941 | |||
| 13942 | ✗ | if (srcAllocIndex > 0) | |
| 13943 | { | ||
| 13944 | ✗ | --srcAllocIndex; | |
| 13945 | } | ||
| 13946 | else | ||
| 13947 | { | ||
| 13948 | ✗ | if (srcBlockIndex > 0) | |
| 13949 | { | ||
| 13950 | ✗ | --srcBlockIndex; | |
| 13951 | ✗ | srcAllocIndex = SIZE_MAX; | |
| 13952 | } | ||
| 13953 | else | ||
| 13954 | { | ||
| 13955 | ✗ | return VK_SUCCESS; | |
| 13956 | } | ||
| 13957 | } | ||
| 13958 | ✗ | } | |
| 13959 | } | ||
| 13960 | |||
| 13961 | size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const | ||
| 13962 | { | ||
| 13963 | ✗ | size_t result = 0; | |
| 13964 | ✗ | for (size_t i = 0; i < m_Blocks.size(); ++i) | |
| 13965 | { | ||
| 13966 | ✗ | if (m_Blocks[i]->m_HasNonMovableAllocations) | |
| 13967 | { | ||
| 13968 | ✗ | ++result; | |
| 13969 | } | ||
| 13970 | } | ||
| 13971 | ✗ | return result; | |
| 13972 | } | ||
| 13973 | |||
| 13974 | VkResult VmaDefragmentationAlgorithm_Generic::Defragment( | ||
| 13975 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, | ||
| 13976 | VkDeviceSize maxBytesToMove, | ||
| 13977 | uint32_t maxAllocationsToMove, | ||
| 13978 | VmaDefragmentationFlags flags) | ||
| 13979 | { | ||
| 13980 | ✗ | if (!m_AllAllocations && m_AllocationCount == 0) | |
| 13981 | { | ||
| 13982 | ✗ | return VK_SUCCESS; | |
| 13983 | } | ||
| 13984 | |||
| 13985 | ✗ | const size_t blockCount = m_Blocks.size(); | |
| 13986 | ✗ | for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) | |
| 13987 | { | ||
| 13988 | ✗ | BlockInfo* pBlockInfo = m_Blocks[blockIndex]; | |
| 13989 | |||
| 13990 | ✗ | if (m_AllAllocations) | |
| 13991 | { | ||
| 13992 | ✗ | VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata; | |
| 13993 | ✗ | for (VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin(); | |
| 13994 | ✗ | it != pMetadata->m_Suballocations.end(); | |
| 13995 | ✗ | ++it) | |
| 13996 | { | ||
| 13997 | ✗ | if (it->type != VMA_SUBALLOCATION_TYPE_FREE) | |
| 13998 | { | ||
| 13999 | ✗ | AllocationInfo allocInfo = AllocationInfo(it->hAllocation, VMA_NULL); | |
| 14000 | ✗ | pBlockInfo->m_Allocations.push_back(allocInfo); | |
| 14001 | } | ||
| 14002 | } | ||
| 14003 | } | ||
| 14004 | |||
| 14005 | ✗ | pBlockInfo->CalcHasNonMovableAllocations(); | |
| 14006 | |||
| 14007 | // This is a choice based on research. | ||
| 14008 | // Option 1: | ||
| 14009 | ✗ | pBlockInfo->SortAllocationsByOffsetDescending(); | |
| 14010 | // Option 2: | ||
| 14011 | //pBlockInfo->SortAllocationsBySizeDescending(); | ||
| 14012 | } | ||
| 14013 | |||
| 14014 | // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks. | ||
| 14015 | ✗ | VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination()); | |
| 14016 | |||
| 14017 | // This is a choice based on research. | ||
| 14018 | ✗ | const uint32_t roundCount = 2; | |
| 14019 | |||
| 14020 | // Execute defragmentation rounds (the main part). | ||
| 14021 | ✗ | VkResult result = VK_SUCCESS; | |
| 14022 | ✗ | for (uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round) | |
| 14023 | { | ||
| 14024 | ✗ | result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove, !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)); | |
| 14025 | } | ||
| 14026 | |||
| 14027 | ✗ | return result; | |
| 14028 | } | ||
| 14029 | |||
| 14030 | bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense( | ||
| 14031 | size_t dstBlockIndex, VkDeviceSize dstOffset, | ||
| 14032 | size_t srcBlockIndex, VkDeviceSize srcOffset) | ||
| 14033 | { | ||
| 14034 | ✗ | if (dstBlockIndex < srcBlockIndex) | |
| 14035 | { | ||
| 14036 | ✗ | return true; | |
| 14037 | } | ||
| 14038 | ✗ | if (dstBlockIndex > srcBlockIndex) | |
| 14039 | { | ||
| 14040 | ✗ | return false; | |
| 14041 | } | ||
| 14042 | ✗ | if (dstOffset < srcOffset) | |
| 14043 | { | ||
| 14044 | ✗ | return true; | |
| 14045 | } | ||
| 14046 | ✗ | return false; | |
| 14047 | } | ||
| 14048 | |||
| 14049 | //////////////////////////////////////////////////////////////////////////////// | ||
| 14050 | // VmaDefragmentationAlgorithm_Fast | ||
| 14051 | |||
| 14052 | VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast( | ||
| 14053 | VmaAllocator hAllocator, | ||
| 14054 | VmaBlockVector* pBlockVector, | ||
| 14055 | uint32_t currentFrameIndex, | ||
| 14056 | ✗ | bool overlappingMoveSupported) : | |
| 14057 | VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), | ||
| 14058 | ✗ | m_OverlappingMoveSupported(overlappingMoveSupported), | |
| 14059 | ✗ | m_AllocationCount(0), | |
| 14060 | ✗ | m_AllAllocations(false), | |
| 14061 | ✗ | m_BytesMoved(0), | |
| 14062 | ✗ | m_AllocationsMoved(0), | |
| 14063 | ✗ | m_BlockInfos(VmaStlAllocator<BlockInfo>(hAllocator->GetAllocationCallbacks())) | |
| 14064 | { | ||
| 14065 | VMA_ASSERT(VMA_DEBUG_MARGIN == 0); | ||
| 14066 | |||
| 14067 | ✗ | } | |
| 14068 | |||
| 14069 | VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast() | ||
| 14070 | { | ||
| 14071 | ✗ | } | |
| 14072 | |||
| 14073 | VkResult VmaDefragmentationAlgorithm_Fast::Defragment( | ||
| 14074 | VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves, | ||
| 14075 | VkDeviceSize maxBytesToMove, | ||
| 14076 | uint32_t maxAllocationsToMove, | ||
| 14077 | VmaDefragmentationFlags flags) | ||
| 14078 | { | ||
| 14079 | ✗ | VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount); | |
| 14080 | |||
| 14081 | ✗ | const size_t blockCount = m_pBlockVector->GetBlockCount(); | |
| 14082 | ✗ | if (blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0) | |
| 14083 | { | ||
| 14084 | ✗ | return VK_SUCCESS; | |
| 14085 | } | ||
| 14086 | |||
| 14087 | ✗ | PreprocessMetadata(); | |
| 14088 | |||
| 14089 | // Sort blocks in order from most destination. | ||
| 14090 | |||
| 14091 | ✗ | m_BlockInfos.resize(blockCount); | |
| 14092 | ✗ | for (size_t i = 0; i < blockCount; ++i) | |
| 14093 | { | ||
| 14094 | ✗ | m_BlockInfos[i].origBlockIndex = i; | |
| 14095 | } | ||
| 14096 | |||
| 14097 | VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool { | ||
| 14098 | return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() < | ||
| 14099 | m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize(); | ||
| 14100 | }); | ||
| 14101 | |||
| 14102 | // THE MAIN ALGORITHM | ||
| 14103 | |||
| 14104 | ✗ | FreeSpaceDatabase freeSpaceDb; | |
| 14105 | |||
| 14106 | ✗ | size_t dstBlockInfoIndex = 0; | |
| 14107 | ✗ | size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; | |
| 14108 | ✗ | VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); | |
| 14109 | ✗ | VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; | |
| 14110 | ✗ | VkDeviceSize dstBlockSize = pDstMetadata->GetSize(); | |
| 14111 | ✗ | VkDeviceSize dstOffset = 0; | |
| 14112 | |||
| 14113 | ✗ | bool end = false; | |
| 14114 | ✗ | for (size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex) | |
| 14115 | { | ||
| 14116 | ✗ | const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex; | |
| 14117 | ✗ | VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex); | |
| 14118 | ✗ | VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata; | |
| 14119 | ✗ | for (VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin(); | |
| 14120 | ✗ | !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); ) | |
| 14121 | { | ||
| 14122 | ✗ | VmaAllocation_T* const pAlloc = srcSuballocIt->hAllocation; | |
| 14123 | ✗ | const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment(); | |
| 14124 | ✗ | const VkDeviceSize srcAllocSize = srcSuballocIt->size; | |
| 14125 | ✗ | if (m_AllocationsMoved == maxAllocationsToMove || | |
| 14126 | ✗ | m_BytesMoved + srcAllocSize > maxBytesToMove) | |
| 14127 | { | ||
| 14128 | ✗ | end = true; | |
| 14129 | ✗ | break; | |
| 14130 | } | ||
| 14131 | ✗ | const VkDeviceSize srcAllocOffset = srcSuballocIt->offset; | |
| 14132 | |||
| 14133 | ✗ | VmaDefragmentationMove move = {}; | |
| 14134 | // Try to place it in one of free spaces from the database. | ||
| 14135 | size_t freeSpaceInfoIndex; | ||
| 14136 | VkDeviceSize dstAllocOffset; | ||
| 14137 | ✗ | if (freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize, | |
| 14138 | freeSpaceInfoIndex, dstAllocOffset)) | ||
| 14139 | { | ||
| 14140 | ✗ | size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex; | |
| 14141 | ✗ | VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex); | |
| 14142 | ✗ | VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata; | |
| 14143 | |||
| 14144 | // Same block | ||
| 14145 | ✗ | if (freeSpaceInfoIndex == srcBlockInfoIndex) | |
| 14146 | { | ||
| 14147 | ✗ | VMA_ASSERT(dstAllocOffset <= srcAllocOffset); | |
| 14148 | |||
| 14149 | // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. | ||
| 14150 | |||
| 14151 | ✗ | VmaSuballocation suballoc = *srcSuballocIt; | |
| 14152 | ✗ | suballoc.offset = dstAllocOffset; | |
| 14153 | ✗ | suballoc.hAllocation->ChangeOffset(dstAllocOffset); | |
| 14154 | ✗ | m_BytesMoved += srcAllocSize; | |
| 14155 | ✗ | ++m_AllocationsMoved; | |
| 14156 | |||
| 14157 | ✗ | VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; | |
| 14158 | ✗ | ++nextSuballocIt; | |
| 14159 | ✗ | pSrcMetadata->m_Suballocations.erase(srcSuballocIt); | |
| 14160 | ✗ | srcSuballocIt = nextSuballocIt; | |
| 14161 | |||
| 14162 | ✗ | InsertSuballoc(pFreeSpaceMetadata, suballoc); | |
| 14163 | |||
| 14164 | ✗ | move.srcBlockIndex = srcOrigBlockIndex; | |
| 14165 | ✗ | move.dstBlockIndex = freeSpaceOrigBlockIndex; | |
| 14166 | ✗ | move.srcOffset = srcAllocOffset; | |
| 14167 | ✗ | move.dstOffset = dstAllocOffset; | |
| 14168 | ✗ | move.size = srcAllocSize; | |
| 14169 | |||
| 14170 | ✗ | moves.push_back(move); | |
| 14171 | } | ||
| 14172 | // Different block | ||
| 14173 | else | ||
| 14174 | { | ||
| 14175 | // MOVE OPTION 2: Move the allocation to a different block. | ||
| 14176 | |||
| 14177 | ✗ | VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex); | |
| 14178 | |||
| 14179 | ✗ | VmaSuballocation suballoc = *srcSuballocIt; | |
| 14180 | ✗ | suballoc.offset = dstAllocOffset; | |
| 14181 | ✗ | suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset); | |
| 14182 | ✗ | m_BytesMoved += srcAllocSize; | |
| 14183 | ✗ | ++m_AllocationsMoved; | |
| 14184 | |||
| 14185 | ✗ | VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; | |
| 14186 | ✗ | ++nextSuballocIt; | |
| 14187 | ✗ | pSrcMetadata->m_Suballocations.erase(srcSuballocIt); | |
| 14188 | ✗ | srcSuballocIt = nextSuballocIt; | |
| 14189 | |||
| 14190 | ✗ | InsertSuballoc(pFreeSpaceMetadata, suballoc); | |
| 14191 | |||
| 14192 | ✗ | move.srcBlockIndex = srcOrigBlockIndex; | |
| 14193 | ✗ | move.dstBlockIndex = freeSpaceOrigBlockIndex; | |
| 14194 | ✗ | move.srcOffset = srcAllocOffset; | |
| 14195 | ✗ | move.dstOffset = dstAllocOffset; | |
| 14196 | ✗ | move.size = srcAllocSize; | |
| 14197 | |||
| 14198 | ✗ | moves.push_back(move); | |
| 14199 | } | ||
| 14200 | } | ||
| 14201 | else | ||
| 14202 | { | ||
| 14203 | ✗ | dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment); | |
| 14204 | |||
| 14205 | // If the allocation doesn't fit before the end of dstBlock, forward to next block. | ||
| 14206 | ✗ | while (dstBlockInfoIndex < srcBlockInfoIndex && | |
| 14207 | ✗ | dstAllocOffset + srcAllocSize > dstBlockSize) | |
| 14208 | { | ||
| 14209 | // But before that, register remaining free space at the end of dst block. | ||
| 14210 | ✗ | freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset); | |
| 14211 | |||
| 14212 | ✗ | ++dstBlockInfoIndex; | |
| 14213 | ✗ | dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; | |
| 14214 | ✗ | pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); | |
| 14215 | ✗ | pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; | |
| 14216 | ✗ | dstBlockSize = pDstMetadata->GetSize(); | |
| 14217 | ✗ | dstOffset = 0; | |
| 14218 | ✗ | dstAllocOffset = 0; | |
| 14219 | } | ||
| 14220 | |||
| 14221 | // Same block | ||
| 14222 | ✗ | if (dstBlockInfoIndex == srcBlockInfoIndex) | |
| 14223 | { | ||
| 14224 | ✗ | VMA_ASSERT(dstAllocOffset <= srcAllocOffset); | |
| 14225 | |||
| 14226 | ✗ | const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset; | |
| 14227 | |||
| 14228 | ✗ | bool skipOver = overlap; | |
| 14229 | ✗ | if (overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset) | |
| 14230 | { | ||
| 14231 | // If destination and source place overlap, skip if it would move it | ||
| 14232 | // by only < 1/64 of its size. | ||
| 14233 | ✗ | skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize; | |
| 14234 | } | ||
| 14235 | |||
| 14236 | ✗ | if (skipOver) | |
| 14237 | { | ||
| 14238 | ✗ | freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset); | |
| 14239 | |||
| 14240 | ✗ | dstOffset = srcAllocOffset + srcAllocSize; | |
| 14241 | ✗ | ++srcSuballocIt; | |
| 14242 | } | ||
| 14243 | // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. | ||
| 14244 | else | ||
| 14245 | { | ||
| 14246 | ✗ | srcSuballocIt->offset = dstAllocOffset; | |
| 14247 | ✗ | srcSuballocIt->hAllocation->ChangeOffset(dstAllocOffset); | |
| 14248 | ✗ | dstOffset = dstAllocOffset + srcAllocSize; | |
| 14249 | ✗ | m_BytesMoved += srcAllocSize; | |
| 14250 | ✗ | ++m_AllocationsMoved; | |
| 14251 | ✗ | ++srcSuballocIt; | |
| 14252 | |||
| 14253 | ✗ | move.srcBlockIndex = srcOrigBlockIndex; | |
| 14254 | ✗ | move.dstBlockIndex = dstOrigBlockIndex; | |
| 14255 | ✗ | move.srcOffset = srcAllocOffset; | |
| 14256 | ✗ | move.dstOffset = dstAllocOffset; | |
| 14257 | ✗ | move.size = srcAllocSize; | |
| 14258 | |||
| 14259 | ✗ | moves.push_back(move); | |
| 14260 | } | ||
| 14261 | } | ||
| 14262 | // Different block | ||
| 14263 | else | ||
| 14264 | { | ||
| 14265 | // MOVE OPTION 2: Move the allocation to a different block. | ||
| 14266 | |||
| 14267 | ✗ | VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex); | |
| 14268 | ✗ | VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize); | |
| 14269 | |||
| 14270 | ✗ | VmaSuballocation suballoc = *srcSuballocIt; | |
| 14271 | ✗ | suballoc.offset = dstAllocOffset; | |
| 14272 | ✗ | suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset); | |
| 14273 | ✗ | dstOffset = dstAllocOffset + srcAllocSize; | |
| 14274 | ✗ | m_BytesMoved += srcAllocSize; | |
| 14275 | ✗ | ++m_AllocationsMoved; | |
| 14276 | |||
| 14277 | ✗ | VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; | |
| 14278 | ✗ | ++nextSuballocIt; | |
| 14279 | ✗ | pSrcMetadata->m_Suballocations.erase(srcSuballocIt); | |
| 14280 | ✗ | srcSuballocIt = nextSuballocIt; | |
| 14281 | |||
| 14282 | ✗ | pDstMetadata->m_Suballocations.push_back(suballoc); | |
| 14283 | |||
| 14284 | ✗ | move.srcBlockIndex = srcOrigBlockIndex; | |
| 14285 | ✗ | move.dstBlockIndex = dstOrigBlockIndex; | |
| 14286 | ✗ | move.srcOffset = srcAllocOffset; | |
| 14287 | ✗ | move.dstOffset = dstAllocOffset; | |
| 14288 | ✗ | move.size = srcAllocSize; | |
| 14289 | |||
| 14290 | ✗ | moves.push_back(move); | |
| 14291 | } | ||
| 14292 | } | ||
| 14293 | } | ||
| 14294 | } | ||
| 14295 | |||
| 14296 | ✗ | m_BlockInfos.clear(); | |
| 14297 | |||
| 14298 | ✗ | PostprocessMetadata(); | |
| 14299 | |||
| 14300 | ✗ | return VK_SUCCESS; | |
| 14301 | } | ||
| 14302 | |||
| 14303 | void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata() | ||
| 14304 | { | ||
| 14305 | ✗ | const size_t blockCount = m_pBlockVector->GetBlockCount(); | |
| 14306 | ✗ | for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) | |
| 14307 | { | ||
| 14308 | VmaBlockMetadata_Generic* const pMetadata = | ||
| 14309 | ✗ | (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; | |
| 14310 | ✗ | pMetadata->m_FreeCount = 0; | |
| 14311 | ✗ | pMetadata->m_SumFreeSize = pMetadata->GetSize(); | |
| 14312 | ✗ | pMetadata->m_FreeSuballocationsBySize.clear(); | |
| 14313 | ✗ | for (VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); | |
| 14314 | ✗ | it != pMetadata->m_Suballocations.end(); ) | |
| 14315 | { | ||
| 14316 | ✗ | if (it->type == VMA_SUBALLOCATION_TYPE_FREE) | |
| 14317 | { | ||
| 14318 | ✗ | VmaSuballocationList::iterator nextIt = it; | |
| 14319 | ✗ | ++nextIt; | |
| 14320 | ✗ | pMetadata->m_Suballocations.erase(it); | |
| 14321 | ✗ | it = nextIt; | |
| 14322 | } | ||
| 14323 | else | ||
| 14324 | { | ||
| 14325 | ✗ | ++it; | |
| 14326 | } | ||
| 14327 | } | ||
| 14328 | } | ||
| 14329 | ✗ | } | |
| 14330 | |||
| 14331 | void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata() | ||
| 14332 | { | ||
| 14333 | ✗ | const size_t blockCount = m_pBlockVector->GetBlockCount(); | |
| 14334 | ✗ | for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) | |
| 14335 | { | ||
| 14336 | VmaBlockMetadata_Generic* const pMetadata = | ||
| 14337 | ✗ | (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; | |
| 14338 | ✗ | const VkDeviceSize blockSize = pMetadata->GetSize(); | |
| 14339 | |||
| 14340 | // No allocations in this block - entire area is free. | ||
| 14341 | ✗ | if (pMetadata->m_Suballocations.empty()) | |
| 14342 | { | ||
| 14343 | ✗ | pMetadata->m_FreeCount = 1; | |
| 14344 | //pMetadata->m_SumFreeSize is already set to blockSize. | ||
| 14345 | ✗ | VmaSuballocation suballoc = { | |
| 14346 | 0, // offset | ||
| 14347 | blockSize, // size | ||
| 14348 | VMA_NULL, // hAllocation | ||
| 14349 | ✗ | VMA_SUBALLOCATION_TYPE_FREE }; | |
| 14350 | ✗ | pMetadata->m_Suballocations.push_back(suballoc); | |
| 14351 | ✗ | pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin()); | |
| 14352 | } | ||
| 14353 | // There are some allocations in this block. | ||
| 14354 | else | ||
| 14355 | { | ||
| 14356 | ✗ | VkDeviceSize offset = 0; | |
| 14357 | ✗ | VmaSuballocationList::iterator it; | |
| 14358 | ✗ | for (it = pMetadata->m_Suballocations.begin(); | |
| 14359 | ✗ | it != pMetadata->m_Suballocations.end(); | |
| 14360 | ✗ | ++it) | |
| 14361 | { | ||
| 14362 | ✗ | VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE); | |
| 14363 | ✗ | VMA_ASSERT(it->offset >= offset); | |
| 14364 | |||
| 14365 | // Need to insert preceding free space. | ||
| 14366 | ✗ | if (it->offset > offset) | |
| 14367 | { | ||
| 14368 | ✗ | ++pMetadata->m_FreeCount; | |
| 14369 | ✗ | const VkDeviceSize freeSize = it->offset - offset; | |
| 14370 | ✗ | VmaSuballocation suballoc = { | |
| 14371 | offset, // offset | ||
| 14372 | freeSize, // size | ||
| 14373 | VMA_NULL, // hAllocation | ||
| 14374 | ✗ | VMA_SUBALLOCATION_TYPE_FREE }; | |
| 14375 | ✗ | VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); | |
| 14376 | ✗ | if (freeSize >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) | |
| 14377 | { | ||
| 14378 | ✗ | pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt); | |
| 14379 | } | ||
| 14380 | } | ||
| 14381 | |||
| 14382 | ✗ | pMetadata->m_SumFreeSize -= it->size; | |
| 14383 | ✗ | offset = it->offset + it->size; | |
| 14384 | } | ||
| 14385 | |||
| 14386 | // Need to insert trailing free space. | ||
| 14387 | ✗ | if (offset < blockSize) | |
| 14388 | { | ||
| 14389 | ✗ | ++pMetadata->m_FreeCount; | |
| 14390 | ✗ | const VkDeviceSize freeSize = blockSize - offset; | |
| 14391 | ✗ | VmaSuballocation suballoc = { | |
| 14392 | offset, // offset | ||
| 14393 | freeSize, // size | ||
| 14394 | VMA_NULL, // hAllocation | ||
| 14395 | ✗ | VMA_SUBALLOCATION_TYPE_FREE }; | |
| 14396 | ✗ | VMA_ASSERT(it == pMetadata->m_Suballocations.end()); | |
| 14397 | ✗ | VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); | |
| 14398 | ✗ | if (freeSize > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) | |
| 14399 | { | ||
| 14400 | ✗ | pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt); | |
| 14401 | } | ||
| 14402 | } | ||
| 14403 | |||
| 14404 | ✗ | VMA_SORT( | |
| 14405 | pMetadata->m_FreeSuballocationsBySize.begin(), | ||
| 14406 | pMetadata->m_FreeSuballocationsBySize.end(), | ||
| 14407 | VmaSuballocationItemSizeLess()); | ||
| 14408 | } | ||
| 14409 | |||
| 14410 | VMA_HEAVY_ASSERT(pMetadata->Validate()); | ||
| 14411 | } | ||
| 14412 | ✗ | } | |
| 14413 | |||
| 14414 | void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc) | ||
| 14415 | { | ||
| 14416 | // TODO: Optimize somehow. Remember iterator instead of searching for it linearly. | ||
| 14417 | ✗ | VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); | |
| 14418 | ✗ | while (it != pMetadata->m_Suballocations.end()) | |
| 14419 | { | ||
| 14420 | ✗ | if (it->offset < suballoc.offset) | |
| 14421 | { | ||
| 14422 | ✗ | ++it; | |
| 14423 | } | ||
| 14424 | } | ||
| 14425 | ✗ | pMetadata->m_Suballocations.insert(it, suballoc); | |
| 14426 | ✗ | } | |
| 14427 | |||
| 14428 | //////////////////////////////////////////////////////////////////////////////// | ||
| 14429 | // VmaBlockVectorDefragmentationContext | ||
| 14430 | |||
| 14431 | VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext( | ||
| 14432 | VmaAllocator hAllocator, | ||
| 14433 | VmaPool hCustomPool, | ||
| 14434 | VmaBlockVector* pBlockVector, | ||
| 14435 | ✗ | uint32_t currFrameIndex) : | |
| 14436 | ✗ | res(VK_SUCCESS), | |
| 14437 | ✗ | mutexLocked(false), | |
| 14438 | ✗ | blockContexts(VmaStlAllocator<VmaBlockDefragmentationContext>(hAllocator->GetAllocationCallbacks())), | |
| 14439 | ✗ | defragmentationMoves(VmaStlAllocator<VmaDefragmentationMove>(hAllocator->GetAllocationCallbacks())), | |
| 14440 | ✗ | defragmentationMovesProcessed(0), | |
| 14441 | ✗ | defragmentationMovesCommitted(0), | |
| 14442 | ✗ | hasDefragmentationPlan(0), | |
| 14443 | ✗ | m_hAllocator(hAllocator), | |
| 14444 | ✗ | m_hCustomPool(hCustomPool), | |
| 14445 | ✗ | m_pBlockVector(pBlockVector), | |
| 14446 | ✗ | m_CurrFrameIndex(currFrameIndex), | |
| 14447 | ✗ | m_pAlgorithm(VMA_NULL), | |
| 14448 | ✗ | m_Allocations(VmaStlAllocator<AllocInfo>(hAllocator->GetAllocationCallbacks())), | |
| 14449 | ✗ | m_AllAllocations(false) | |
| 14450 | { | ||
| 14451 | ✗ | } | |
| 14452 | |||
| 14453 | VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext() | ||
| 14454 | { | ||
| 14455 | ✗ | vma_delete(m_hAllocator, m_pAlgorithm); | |
| 14456 | ✗ | } | |
| 14457 | |||
| 14458 | void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) | ||
| 14459 | { | ||
| 14460 | ✗ | AllocInfo info = { hAlloc, pChanged }; | |
| 14461 | ✗ | m_Allocations.push_back(info); | |
| 14462 | ✗ | } | |
| 14463 | |||
| 14464 | void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags) | ||
| 14465 | { | ||
| 14466 | ✗ | const bool allAllocations = m_AllAllocations || | |
| 14467 | ✗ | m_Allocations.size() == m_pBlockVector->CalcAllocationCount(); | |
| 14468 | |||
| 14469 | /******************************** | ||
| 14470 | HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM. | ||
| 14471 | ********************************/ | ||
| 14472 | |||
| 14473 | /* | ||
| 14474 | Fast algorithm is supported only when certain criteria are met: | ||
| 14475 | - VMA_DEBUG_MARGIN is 0. | ||
| 14476 | - All allocations in this block vector are moveable. | ||
| 14477 | - There is no possibility of image/buffer granularity conflict. | ||
| 14478 | - The defragmentation is not incremental | ||
| 14479 | */ | ||
| 14480 | ✗ | if (VMA_DEBUG_MARGIN == 0 && | |
| 14481 | ✗ | allAllocations && | |
| 14482 | ✗ | !m_pBlockVector->IsBufferImageGranularityConflictPossible() && | |
| 14483 | ✗ | !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)) | |
| 14484 | { | ||
| 14485 | ✗ | m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)( | |
| 14486 | ✗ | m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); | |
| 14487 | } | ||
| 14488 | else | ||
| 14489 | { | ||
| 14490 | ✗ | m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)( | |
| 14491 | ✗ | m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); | |
| 14492 | } | ||
| 14493 | |||
| 14494 | ✗ | if (allAllocations) | |
| 14495 | { | ||
| 14496 | ✗ | m_pAlgorithm->AddAll(); | |
| 14497 | } | ||
| 14498 | else | ||
| 14499 | { | ||
| 14500 | ✗ | for (size_t i = 0, count = m_Allocations.size(); i < count; ++i) | |
| 14501 | { | ||
| 14502 | ✗ | m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged); | |
| 14503 | } | ||
| 14504 | } | ||
| 14505 | ✗ | } | |
| 14506 | |||
| 14507 | //////////////////////////////////////////////////////////////////////////////// | ||
| 14508 | // VmaDefragmentationContext | ||
| 14509 | |||
| 14510 | VmaDefragmentationContext_T::VmaDefragmentationContext_T( | ||
| 14511 | VmaAllocator hAllocator, | ||
| 14512 | uint32_t currFrameIndex, | ||
| 14513 | uint32_t flags, | ||
| 14514 | ✗ | VmaDefragmentationStats* pStats) : | |
| 14515 | ✗ | m_hAllocator(hAllocator), | |
| 14516 | ✗ | m_CurrFrameIndex(currFrameIndex), | |
| 14517 | ✗ | m_Flags(flags), | |
| 14518 | ✗ | m_pStats(pStats), | |
| 14519 | ✗ | m_CustomPoolContexts(VmaStlAllocator<VmaBlockVectorDefragmentationContext*>(hAllocator->GetAllocationCallbacks())) | |
| 14520 | { | ||
| 14521 | ✗ | memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts)); | |
| 14522 | ✗ | } | |
| 14523 | |||
| 14524 | VmaDefragmentationContext_T::~VmaDefragmentationContext_T() | ||
| 14525 | { | ||
| 14526 | ✗ | for (size_t i = m_CustomPoolContexts.size(); i--; ) | |
| 14527 | { | ||
| 14528 | ✗ | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i]; | |
| 14529 | ✗ | pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats); | |
| 14530 | ✗ | vma_delete(m_hAllocator, pBlockVectorCtx); | |
| 14531 | } | ||
| 14532 | ✗ | for (size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; ) | |
| 14533 | { | ||
| 14534 | ✗ | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i]; | |
| 14535 | ✗ | if (pBlockVectorCtx) | |
| 14536 | { | ||
| 14537 | ✗ | pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats); | |
| 14538 | ✗ | vma_delete(m_hAllocator, pBlockVectorCtx); | |
| 14539 | } | ||
| 14540 | } | ||
| 14541 | ✗ | } | |
| 14542 | |||
| 14543 | void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, const VmaPool* pPools) | ||
| 14544 | { | ||
| 14545 | ✗ | for (uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) | |
| 14546 | { | ||
| 14547 | ✗ | VmaPool pool = pPools[poolIndex]; | |
| 14548 | ✗ | VMA_ASSERT(pool); | |
| 14549 | // Pools with algorithm other than default are not defragmented. | ||
| 14550 | ✗ | if (pool->m_BlockVector.GetAlgorithm() == 0) | |
| 14551 | { | ||
| 14552 | ✗ | VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; | |
| 14553 | |||
| 14554 | ✗ | for (size_t i = m_CustomPoolContexts.size(); i--; ) | |
| 14555 | { | ||
| 14556 | ✗ | if (m_CustomPoolContexts[i]->GetCustomPool() == pool) | |
| 14557 | { | ||
| 14558 | ✗ | pBlockVectorDefragCtx = m_CustomPoolContexts[i]; | |
| 14559 | ✗ | break; | |
| 14560 | } | ||
| 14561 | } | ||
| 14562 | |||
| 14563 | ✗ | if (!pBlockVectorDefragCtx) | |
| 14564 | { | ||
| 14565 | ✗ | pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( | |
| 14566 | ✗ | m_hAllocator, | |
| 14567 | pool, | ||
| 14568 | &pool->m_BlockVector, | ||
| 14569 | ✗ | m_CurrFrameIndex); | |
| 14570 | ✗ | m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); | |
| 14571 | } | ||
| 14572 | |||
| 14573 | ✗ | pBlockVectorDefragCtx->AddAll(); | |
| 14574 | } | ||
| 14575 | } | ||
| 14576 | ✗ | } | |
| 14577 | |||
| 14578 | void VmaDefragmentationContext_T::AddAllocations( | ||
| 14579 | uint32_t allocationCount, | ||
| 14580 | const VmaAllocation* pAllocations, | ||
| 14581 | VkBool32* pAllocationsChanged) | ||
| 14582 | { | ||
| 14583 | // Dispatch pAllocations among defragmentators. Create them when necessary. | ||
| 14584 | ✗ | for (uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) | |
| 14585 | { | ||
| 14586 | ✗ | const VmaAllocation hAlloc = pAllocations[allocIndex]; | |
| 14587 | ✗ | VMA_ASSERT(hAlloc); | |
| 14588 | // DedicatedAlloc cannot be defragmented. | ||
| 14589 | ✗ | if ((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) && | |
| 14590 | // Lost allocation cannot be defragmented. | ||
| 14591 | ✗ | (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)) | |
| 14592 | { | ||
| 14593 | ✗ | VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; | |
| 14594 | |||
| 14595 | ✗ | const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool(); | |
| 14596 | // This allocation belongs to custom pool. | ||
| 14597 | ✗ | if (hAllocPool != VK_NULL_HANDLE) | |
| 14598 | { | ||
| 14599 | // Pools with algorithm other than default are not defragmented. | ||
| 14600 | ✗ | if (hAllocPool->m_BlockVector.GetAlgorithm() == 0) | |
| 14601 | { | ||
| 14602 | ✗ | for (size_t i = m_CustomPoolContexts.size(); i--; ) | |
| 14603 | { | ||
| 14604 | ✗ | if (m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool) | |
| 14605 | { | ||
| 14606 | ✗ | pBlockVectorDefragCtx = m_CustomPoolContexts[i]; | |
| 14607 | ✗ | break; | |
| 14608 | } | ||
| 14609 | } | ||
| 14610 | ✗ | if (!pBlockVectorDefragCtx) | |
| 14611 | { | ||
| 14612 | ✗ | pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( | |
| 14613 | ✗ | m_hAllocator, | |
| 14614 | hAllocPool, | ||
| 14615 | &hAllocPool->m_BlockVector, | ||
| 14616 | ✗ | m_CurrFrameIndex); | |
| 14617 | ✗ | m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); | |
| 14618 | } | ||
| 14619 | } | ||
| 14620 | } | ||
| 14621 | // This allocation belongs to default pool. | ||
| 14622 | else | ||
| 14623 | { | ||
| 14624 | ✗ | const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); | |
| 14625 | ✗ | pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex]; | |
| 14626 | ✗ | if (!pBlockVectorDefragCtx) | |
| 14627 | { | ||
| 14628 | ✗ | pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( | |
| 14629 | ✗ | m_hAllocator, | |
| 14630 | VMA_NULL, // hCustomPool | ||
| 14631 | ✗ | m_hAllocator->m_pBlockVectors[memTypeIndex], | |
| 14632 | ✗ | m_CurrFrameIndex); | |
| 14633 | ✗ | m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx; | |
| 14634 | } | ||
| 14635 | } | ||
| 14636 | |||
| 14637 | ✗ | if (pBlockVectorDefragCtx) | |
| 14638 | { | ||
| 14639 | ✗ | VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ? | |
| 14640 | ✗ | &pAllocationsChanged[allocIndex] : VMA_NULL; | |
| 14641 | ✗ | pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged); | |
| 14642 | } | ||
| 14643 | } | ||
| 14644 | } | ||
| 14645 | ✗ | } | |
| 14646 | |||
| 14647 | VkResult VmaDefragmentationContext_T::Defragment( | ||
| 14648 | VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, | ||
| 14649 | VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, | ||
| 14650 | VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags) | ||
| 14651 | { | ||
| 14652 | ✗ | if (pStats) | |
| 14653 | { | ||
| 14654 | ✗ | memset(pStats, 0, sizeof(VmaDefragmentationStats)); | |
| 14655 | } | ||
| 14656 | |||
| 14657 | ✗ | if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) | |
| 14658 | { | ||
| 14659 | // For incremental defragmetnations, we just earmark how much we can move | ||
| 14660 | // The real meat is in the defragmentation steps | ||
| 14661 | ✗ | m_MaxCpuBytesToMove = maxCpuBytesToMove; | |
| 14662 | ✗ | m_MaxCpuAllocationsToMove = maxCpuAllocationsToMove; | |
| 14663 | |||
| 14664 | ✗ | m_MaxGpuBytesToMove = maxGpuBytesToMove; | |
| 14665 | ✗ | m_MaxGpuAllocationsToMove = maxGpuAllocationsToMove; | |
| 14666 | |||
| 14667 | ✗ | if (m_MaxCpuBytesToMove == 0 && m_MaxCpuAllocationsToMove == 0 && | |
| 14668 | ✗ | m_MaxGpuBytesToMove == 0 && m_MaxGpuAllocationsToMove == 0) | |
| 14669 | ✗ | return VK_SUCCESS; | |
| 14670 | |||
| 14671 | ✗ | return VK_NOT_READY; | |
| 14672 | } | ||
| 14673 | |||
| 14674 | ✗ | if (commandBuffer == VK_NULL_HANDLE) | |
| 14675 | { | ||
| 14676 | ✗ | maxGpuBytesToMove = 0; | |
| 14677 | ✗ | maxGpuAllocationsToMove = 0; | |
| 14678 | } | ||
| 14679 | |||
| 14680 | ✗ | VkResult res = VK_SUCCESS; | |
| 14681 | |||
| 14682 | // Process default pools. | ||
| 14683 | ✗ | for (uint32_t memTypeIndex = 0; | |
| 14684 | ✗ | memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS; | |
| 14685 | ++memTypeIndex) | ||
| 14686 | { | ||
| 14687 | ✗ | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; | |
| 14688 | ✗ | if (pBlockVectorCtx) | |
| 14689 | { | ||
| 14690 | ✗ | VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); | |
| 14691 | ✗ | pBlockVectorCtx->GetBlockVector()->Defragment( | |
| 14692 | pBlockVectorCtx, | ||
| 14693 | pStats, flags, | ||
| 14694 | maxCpuBytesToMove, maxCpuAllocationsToMove, | ||
| 14695 | maxGpuBytesToMove, maxGpuAllocationsToMove, | ||
| 14696 | commandBuffer); | ||
| 14697 | ✗ | if (pBlockVectorCtx->res != VK_SUCCESS) | |
| 14698 | { | ||
| 14699 | ✗ | res = pBlockVectorCtx->res; | |
| 14700 | } | ||
| 14701 | } | ||
| 14702 | } | ||
| 14703 | |||
| 14704 | // Process custom pools. | ||
| 14705 | ✗ | for (size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); | |
| 14706 | ✗ | customCtxIndex < customCtxCount && res >= VK_SUCCESS; | |
| 14707 | ++customCtxIndex) | ||
| 14708 | { | ||
| 14709 | ✗ | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; | |
| 14710 | ✗ | VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); | |
| 14711 | ✗ | pBlockVectorCtx->GetBlockVector()->Defragment( | |
| 14712 | pBlockVectorCtx, | ||
| 14713 | pStats, flags, | ||
| 14714 | maxCpuBytesToMove, maxCpuAllocationsToMove, | ||
| 14715 | maxGpuBytesToMove, maxGpuAllocationsToMove, | ||
| 14716 | commandBuffer); | ||
| 14717 | ✗ | if (pBlockVectorCtx->res != VK_SUCCESS) | |
| 14718 | { | ||
| 14719 | ✗ | res = pBlockVectorCtx->res; | |
| 14720 | } | ||
| 14721 | } | ||
| 14722 | |||
| 14723 | ✗ | return res; | |
| 14724 | } | ||
| 14725 | |||
| 14726 | VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo) | ||
| 14727 | { | ||
| 14728 | ✗ | VmaDefragmentationPassMoveInfo* pCurrentMove = pInfo->pMoves; | |
| 14729 | ✗ | uint32_t movesLeft = pInfo->moveCount; | |
| 14730 | |||
| 14731 | // Process default pools. | ||
| 14732 | ✗ | for (uint32_t memTypeIndex = 0; | |
| 14733 | ✗ | memTypeIndex < m_hAllocator->GetMemoryTypeCount(); | |
| 14734 | ++memTypeIndex) | ||
| 14735 | { | ||
| 14736 | ✗ | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; | |
| 14737 | ✗ | if (pBlockVectorCtx) | |
| 14738 | { | ||
| 14739 | ✗ | VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); | |
| 14740 | |||
| 14741 | ✗ | if (!pBlockVectorCtx->hasDefragmentationPlan) | |
| 14742 | { | ||
| 14743 | ✗ | pBlockVectorCtx->GetBlockVector()->Defragment( | |
| 14744 | pBlockVectorCtx, | ||
| 14745 | ✗ | m_pStats, m_Flags, | |
| 14746 | ✗ | m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, | |
| 14747 | ✗ | m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, | |
| 14748 | VK_NULL_HANDLE); | ||
| 14749 | |||
| 14750 | ✗ | if (pBlockVectorCtx->res < VK_SUCCESS) | |
| 14751 | ✗ | continue; | |
| 14752 | |||
| 14753 | ✗ | pBlockVectorCtx->hasDefragmentationPlan = true; | |
| 14754 | } | ||
| 14755 | |||
| 14756 | ✗ | const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( | |
| 14757 | pBlockVectorCtx, | ||
| 14758 | pCurrentMove, movesLeft); | ||
| 14759 | |||
| 14760 | ✗ | movesLeft -= processed; | |
| 14761 | ✗ | pCurrentMove += processed; | |
| 14762 | } | ||
| 14763 | } | ||
| 14764 | |||
| 14765 | // Process custom pools. | ||
| 14766 | ✗ | for (size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); | |
| 14767 | ✗ | customCtxIndex < customCtxCount; | |
| 14768 | ++customCtxIndex) | ||
| 14769 | { | ||
| 14770 | ✗ | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; | |
| 14771 | ✗ | VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); | |
| 14772 | |||
| 14773 | ✗ | if (!pBlockVectorCtx->hasDefragmentationPlan) | |
| 14774 | { | ||
| 14775 | ✗ | pBlockVectorCtx->GetBlockVector()->Defragment( | |
| 14776 | pBlockVectorCtx, | ||
| 14777 | ✗ | m_pStats, m_Flags, | |
| 14778 | ✗ | m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, | |
| 14779 | ✗ | m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, | |
| 14780 | VK_NULL_HANDLE); | ||
| 14781 | |||
| 14782 | ✗ | if (pBlockVectorCtx->res < VK_SUCCESS) | |
| 14783 | ✗ | continue; | |
| 14784 | |||
| 14785 | ✗ | pBlockVectorCtx->hasDefragmentationPlan = true; | |
| 14786 | } | ||
| 14787 | |||
| 14788 | ✗ | const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( | |
| 14789 | pBlockVectorCtx, | ||
| 14790 | pCurrentMove, movesLeft); | ||
| 14791 | |||
| 14792 | ✗ | movesLeft -= processed; | |
| 14793 | ✗ | pCurrentMove += processed; | |
| 14794 | } | ||
| 14795 | |||
| 14796 | ✗ | pInfo->moveCount = pInfo->moveCount - movesLeft; | |
| 14797 | |||
| 14798 | ✗ | return VK_SUCCESS; | |
| 14799 | } | ||
| 14800 | VkResult VmaDefragmentationContext_T::DefragmentPassEnd() | ||
| 14801 | { | ||
| 14802 | ✗ | VkResult res = VK_SUCCESS; | |
| 14803 | |||
| 14804 | // Process default pools. | ||
| 14805 | ✗ | for (uint32_t memTypeIndex = 0; | |
| 14806 | ✗ | memTypeIndex < m_hAllocator->GetMemoryTypeCount(); | |
| 14807 | ++memTypeIndex) | ||
| 14808 | { | ||
| 14809 | ✗ | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; | |
| 14810 | ✗ | if (pBlockVectorCtx) | |
| 14811 | { | ||
| 14812 | ✗ | VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); | |
| 14813 | |||
| 14814 | ✗ | if (!pBlockVectorCtx->hasDefragmentationPlan) | |
| 14815 | { | ||
| 14816 | ✗ | res = VK_NOT_READY; | |
| 14817 | ✗ | continue; | |
| 14818 | } | ||
| 14819 | |||
| 14820 | ✗ | pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( | |
| 14821 | ✗ | pBlockVectorCtx, m_pStats); | |
| 14822 | |||
| 14823 | ✗ | if (pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) | |
| 14824 | ✗ | res = VK_NOT_READY; | |
| 14825 | } | ||
| 14826 | } | ||
| 14827 | |||
| 14828 | // Process custom pools. | ||
| 14829 | ✗ | for (size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); | |
| 14830 | ✗ | customCtxIndex < customCtxCount; | |
| 14831 | ++customCtxIndex) | ||
| 14832 | { | ||
| 14833 | ✗ | VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; | |
| 14834 | ✗ | VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); | |
| 14835 | |||
| 14836 | ✗ | if (!pBlockVectorCtx->hasDefragmentationPlan) | |
| 14837 | { | ||
| 14838 | ✗ | res = VK_NOT_READY; | |
| 14839 | ✗ | continue; | |
| 14840 | } | ||
| 14841 | |||
| 14842 | ✗ | pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( | |
| 14843 | ✗ | pBlockVectorCtx, m_pStats); | |
| 14844 | |||
| 14845 | ✗ | if (pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) | |
| 14846 | ✗ | res = VK_NOT_READY; | |
| 14847 | } | ||
| 14848 | |||
| 14849 | ✗ | return res; | |
| 14850 | } | ||
| 14851 | |||
| 14852 | //////////////////////////////////////////////////////////////////////////////// | ||
| 14853 | // VmaRecorder | ||
| 14854 | |||
| 14855 | #if VMA_RECORDING_ENABLED | ||
| 14856 | |||
| 14857 | VmaRecorder::VmaRecorder() : | ||
| 14858 | m_UseMutex(true), | ||
| 14859 | m_Flags(0), | ||
| 14860 | m_File(VMA_NULL), | ||
| 14861 | m_RecordingStartTime(std::chrono::high_resolution_clock::now()) | ||
| 14862 | { | ||
| 14863 | } | ||
| 14864 | |||
| 14865 | VkResult VmaRecorder::Init(const VmaRecordSettings& settings, bool useMutex) | ||
| 14866 | { | ||
| 14867 | m_UseMutex = useMutex; | ||
| 14868 | m_Flags = settings.flags; | ||
| 14869 | |||
| 14870 | #if defined(_WIN32) | ||
| 14871 | // Open file for writing. | ||
| 14872 | errno_t err = fopen_s(&m_File, settings.pFilePath, "wb"); | ||
| 14873 | |||
| 14874 | if (err != 0) | ||
| 14875 | { | ||
| 14876 | return VK_ERROR_INITIALIZATION_FAILED; | ||
| 14877 | } | ||
| 14878 | #else | ||
| 14879 | // Open file for writing. | ||
| 14880 | m_File = fopen(settings.pFilePath, "wb"); | ||
| 14881 | |||
| 14882 | if (m_File == 0) | ||
| 14883 | { | ||
| 14884 | return VK_ERROR_INITIALIZATION_FAILED; | ||
| 14885 | } | ||
| 14886 | #endif | ||
| 14887 | |||
| 14888 | // Write header. | ||
| 14889 | fprintf(m_File, "%s\n", "Vulkan Memory Allocator,Calls recording"); | ||
| 14890 | fprintf(m_File, "%s\n", "1,8"); | ||
| 14891 | |||
| 14892 | return VK_SUCCESS; | ||
| 14893 | } | ||
| 14894 | |||
| 14895 | VmaRecorder::~VmaRecorder() | ||
| 14896 | { | ||
| 14897 | if (m_File != VMA_NULL) | ||
| 14898 | { | ||
| 14899 | fclose(m_File); | ||
| 14900 | } | ||
| 14901 | } | ||
| 14902 | |||
| 14903 | void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex) | ||
| 14904 | { | ||
| 14905 | CallParams callParams; | ||
| 14906 | GetBasicParams(callParams); | ||
| 14907 | |||
| 14908 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 14909 | fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n", callParams.threadId, callParams.time, frameIndex); | ||
| 14910 | Flush(); | ||
| 14911 | } | ||
| 14912 | |||
| 14913 | void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex) | ||
| 14914 | { | ||
| 14915 | CallParams callParams; | ||
| 14916 | GetBasicParams(callParams); | ||
| 14917 | |||
| 14918 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 14919 | fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n", callParams.threadId, callParams.time, frameIndex); | ||
| 14920 | Flush(); | ||
| 14921 | } | ||
| 14922 | |||
| 14923 | void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo& createInfo, VmaPool pool) | ||
| 14924 | { | ||
| 14925 | CallParams callParams; | ||
| 14926 | GetBasicParams(callParams); | ||
| 14927 | |||
| 14928 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 14929 | fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 14930 | createInfo.memoryTypeIndex, | ||
| 14931 | createInfo.flags, | ||
| 14932 | createInfo.blockSize, | ||
| 14933 | (uint64_t)createInfo.minBlockCount, | ||
| 14934 | (uint64_t)createInfo.maxBlockCount, | ||
| 14935 | createInfo.frameInUseCount, | ||
| 14936 | pool); | ||
| 14937 | Flush(); | ||
| 14938 | } | ||
| 14939 | |||
| 14940 | void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool) | ||
| 14941 | { | ||
| 14942 | CallParams callParams; | ||
| 14943 | GetBasicParams(callParams); | ||
| 14944 | |||
| 14945 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 14946 | fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 14947 | pool); | ||
| 14948 | Flush(); | ||
| 14949 | } | ||
| 14950 | |||
| 14951 | void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex, | ||
| 14952 | const VkMemoryRequirements& vkMemReq, | ||
| 14953 | const VmaAllocationCreateInfo& createInfo, | ||
| 14954 | VmaAllocation allocation) | ||
| 14955 | { | ||
| 14956 | CallParams callParams; | ||
| 14957 | GetBasicParams(callParams); | ||
| 14958 | |||
| 14959 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 14960 | UserDataString userDataStr(createInfo.flags, createInfo.pUserData); | ||
| 14961 | fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, | ||
| 14962 | vkMemReq.size, | ||
| 14963 | vkMemReq.alignment, | ||
| 14964 | vkMemReq.memoryTypeBits, | ||
| 14965 | createInfo.flags, | ||
| 14966 | createInfo.usage, | ||
| 14967 | createInfo.requiredFlags, | ||
| 14968 | createInfo.preferredFlags, | ||
| 14969 | createInfo.memoryTypeBits, | ||
| 14970 | createInfo.pool, | ||
| 14971 | allocation, | ||
| 14972 | userDataStr.GetString()); | ||
| 14973 | Flush(); | ||
| 14974 | } | ||
| 14975 | |||
| 14976 | void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex, | ||
| 14977 | const VkMemoryRequirements& vkMemReq, | ||
| 14978 | const VmaAllocationCreateInfo& createInfo, | ||
| 14979 | uint64_t allocationCount, | ||
| 14980 | const VmaAllocation* pAllocations) | ||
| 14981 | { | ||
| 14982 | CallParams callParams; | ||
| 14983 | GetBasicParams(callParams); | ||
| 14984 | |||
| 14985 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 14986 | UserDataString userDataStr(createInfo.flags, createInfo.pUserData); | ||
| 14987 | fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,", callParams.threadId, callParams.time, frameIndex, | ||
| 14988 | vkMemReq.size, | ||
| 14989 | vkMemReq.alignment, | ||
| 14990 | vkMemReq.memoryTypeBits, | ||
| 14991 | createInfo.flags, | ||
| 14992 | createInfo.usage, | ||
| 14993 | createInfo.requiredFlags, | ||
| 14994 | createInfo.preferredFlags, | ||
| 14995 | createInfo.memoryTypeBits, | ||
| 14996 | createInfo.pool); | ||
| 14997 | PrintPointerList(allocationCount, pAllocations); | ||
| 14998 | fprintf(m_File, ",%s\n", userDataStr.GetString()); | ||
| 14999 | Flush(); | ||
| 15000 | } | ||
| 15001 | |||
| 15002 | void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex, | ||
| 15003 | const VkMemoryRequirements& vkMemReq, | ||
| 15004 | bool requiresDedicatedAllocation, | ||
| 15005 | bool prefersDedicatedAllocation, | ||
| 15006 | const VmaAllocationCreateInfo& createInfo, | ||
| 15007 | VmaAllocation allocation) | ||
| 15008 | { | ||
| 15009 | CallParams callParams; | ||
| 15010 | GetBasicParams(callParams); | ||
| 15011 | |||
| 15012 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15013 | UserDataString userDataStr(createInfo.flags, createInfo.pUserData); | ||
| 15014 | fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15015 | vkMemReq.size, | ||
| 15016 | vkMemReq.alignment, | ||
| 15017 | vkMemReq.memoryTypeBits, | ||
| 15018 | requiresDedicatedAllocation ? 1 : 0, | ||
| 15019 | prefersDedicatedAllocation ? 1 : 0, | ||
| 15020 | createInfo.flags, | ||
| 15021 | createInfo.usage, | ||
| 15022 | createInfo.requiredFlags, | ||
| 15023 | createInfo.preferredFlags, | ||
| 15024 | createInfo.memoryTypeBits, | ||
| 15025 | createInfo.pool, | ||
| 15026 | allocation, | ||
| 15027 | userDataStr.GetString()); | ||
| 15028 | Flush(); | ||
| 15029 | } | ||
| 15030 | |||
| 15031 | void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex, | ||
| 15032 | const VkMemoryRequirements& vkMemReq, | ||
| 15033 | bool requiresDedicatedAllocation, | ||
| 15034 | bool prefersDedicatedAllocation, | ||
| 15035 | const VmaAllocationCreateInfo& createInfo, | ||
| 15036 | VmaAllocation allocation) | ||
| 15037 | { | ||
| 15038 | CallParams callParams; | ||
| 15039 | GetBasicParams(callParams); | ||
| 15040 | |||
| 15041 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15042 | UserDataString userDataStr(createInfo.flags, createInfo.pUserData); | ||
| 15043 | fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15044 | vkMemReq.size, | ||
| 15045 | vkMemReq.alignment, | ||
| 15046 | vkMemReq.memoryTypeBits, | ||
| 15047 | requiresDedicatedAllocation ? 1 : 0, | ||
| 15048 | prefersDedicatedAllocation ? 1 : 0, | ||
| 15049 | createInfo.flags, | ||
| 15050 | createInfo.usage, | ||
| 15051 | createInfo.requiredFlags, | ||
| 15052 | createInfo.preferredFlags, | ||
| 15053 | createInfo.memoryTypeBits, | ||
| 15054 | createInfo.pool, | ||
| 15055 | allocation, | ||
| 15056 | userDataStr.GetString()); | ||
| 15057 | Flush(); | ||
| 15058 | } | ||
| 15059 | |||
| 15060 | void VmaRecorder::RecordFreeMemory(uint32_t frameIndex, | ||
| 15061 | VmaAllocation allocation) | ||
| 15062 | { | ||
| 15063 | CallParams callParams; | ||
| 15064 | GetBasicParams(callParams); | ||
| 15065 | |||
| 15066 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15067 | fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15068 | allocation); | ||
| 15069 | Flush(); | ||
| 15070 | } | ||
| 15071 | |||
| 15072 | void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex, | ||
| 15073 | uint64_t allocationCount, | ||
| 15074 | const VmaAllocation* pAllocations) | ||
| 15075 | { | ||
| 15076 | CallParams callParams; | ||
| 15077 | GetBasicParams(callParams); | ||
| 15078 | |||
| 15079 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15080 | fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages,", callParams.threadId, callParams.time, frameIndex); | ||
| 15081 | PrintPointerList(allocationCount, pAllocations); | ||
| 15082 | fprintf(m_File, "\n"); | ||
| 15083 | Flush(); | ||
| 15084 | } | ||
| 15085 | |||
| 15086 | void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex, | ||
| 15087 | VmaAllocation allocation, | ||
| 15088 | const void* pUserData) | ||
| 15089 | { | ||
| 15090 | CallParams callParams; | ||
| 15091 | GetBasicParams(callParams); | ||
| 15092 | |||
| 15093 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15094 | UserDataString userDataStr( | ||
| 15095 | allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0, | ||
| 15096 | pUserData); | ||
| 15097 | fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15098 | allocation, | ||
| 15099 | userDataStr.GetString()); | ||
| 15100 | Flush(); | ||
| 15101 | } | ||
| 15102 | |||
| 15103 | void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex, | ||
| 15104 | VmaAllocation allocation) | ||
| 15105 | { | ||
| 15106 | CallParams callParams; | ||
| 15107 | GetBasicParams(callParams); | ||
| 15108 | |||
| 15109 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15110 | fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15111 | allocation); | ||
| 15112 | Flush(); | ||
| 15113 | } | ||
| 15114 | |||
| 15115 | void VmaRecorder::RecordMapMemory(uint32_t frameIndex, | ||
| 15116 | VmaAllocation allocation) | ||
| 15117 | { | ||
| 15118 | CallParams callParams; | ||
| 15119 | GetBasicParams(callParams); | ||
| 15120 | |||
| 15121 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15122 | fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15123 | allocation); | ||
| 15124 | Flush(); | ||
| 15125 | } | ||
| 15126 | |||
| 15127 | void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex, | ||
| 15128 | VmaAllocation allocation) | ||
| 15129 | { | ||
| 15130 | CallParams callParams; | ||
| 15131 | GetBasicParams(callParams); | ||
| 15132 | |||
| 15133 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15134 | fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15135 | allocation); | ||
| 15136 | Flush(); | ||
| 15137 | } | ||
| 15138 | |||
| 15139 | void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex, | ||
| 15140 | VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) | ||
| 15141 | { | ||
| 15142 | CallParams callParams; | ||
| 15143 | GetBasicParams(callParams); | ||
| 15144 | |||
| 15145 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15146 | fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15147 | allocation, | ||
| 15148 | offset, | ||
| 15149 | size); | ||
| 15150 | Flush(); | ||
| 15151 | } | ||
| 15152 | |||
| 15153 | void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex, | ||
| 15154 | VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) | ||
| 15155 | { | ||
| 15156 | CallParams callParams; | ||
| 15157 | GetBasicParams(callParams); | ||
| 15158 | |||
| 15159 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15160 | fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15161 | allocation, | ||
| 15162 | offset, | ||
| 15163 | size); | ||
| 15164 | Flush(); | ||
| 15165 | } | ||
| 15166 | |||
| 15167 | void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex, | ||
| 15168 | const VkBufferCreateInfo& bufCreateInfo, | ||
| 15169 | const VmaAllocationCreateInfo& allocCreateInfo, | ||
| 15170 | VmaAllocation allocation) | ||
| 15171 | { | ||
| 15172 | CallParams callParams; | ||
| 15173 | GetBasicParams(callParams); | ||
| 15174 | |||
| 15175 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15176 | UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); | ||
| 15177 | fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15178 | bufCreateInfo.flags, | ||
| 15179 | bufCreateInfo.size, | ||
| 15180 | bufCreateInfo.usage, | ||
| 15181 | bufCreateInfo.sharingMode, | ||
| 15182 | allocCreateInfo.flags, | ||
| 15183 | allocCreateInfo.usage, | ||
| 15184 | allocCreateInfo.requiredFlags, | ||
| 15185 | allocCreateInfo.preferredFlags, | ||
| 15186 | allocCreateInfo.memoryTypeBits, | ||
| 15187 | allocCreateInfo.pool, | ||
| 15188 | allocation, | ||
| 15189 | userDataStr.GetString()); | ||
| 15190 | Flush(); | ||
| 15191 | } | ||
| 15192 | |||
| 15193 | void VmaRecorder::RecordCreateImage(uint32_t frameIndex, | ||
| 15194 | const VkImageCreateInfo& imageCreateInfo, | ||
| 15195 | const VmaAllocationCreateInfo& allocCreateInfo, | ||
| 15196 | VmaAllocation allocation) | ||
| 15197 | { | ||
| 15198 | CallParams callParams; | ||
| 15199 | GetBasicParams(callParams); | ||
| 15200 | |||
| 15201 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15202 | UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); | ||
| 15203 | fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15204 | imageCreateInfo.flags, | ||
| 15205 | imageCreateInfo.imageType, | ||
| 15206 | imageCreateInfo.format, | ||
| 15207 | imageCreateInfo.extent.width, | ||
| 15208 | imageCreateInfo.extent.height, | ||
| 15209 | imageCreateInfo.extent.depth, | ||
| 15210 | imageCreateInfo.mipLevels, | ||
| 15211 | imageCreateInfo.arrayLayers, | ||
| 15212 | imageCreateInfo.samples, | ||
| 15213 | imageCreateInfo.tiling, | ||
| 15214 | imageCreateInfo.usage, | ||
| 15215 | imageCreateInfo.sharingMode, | ||
| 15216 | imageCreateInfo.initialLayout, | ||
| 15217 | allocCreateInfo.flags, | ||
| 15218 | allocCreateInfo.usage, | ||
| 15219 | allocCreateInfo.requiredFlags, | ||
| 15220 | allocCreateInfo.preferredFlags, | ||
| 15221 | allocCreateInfo.memoryTypeBits, | ||
| 15222 | allocCreateInfo.pool, | ||
| 15223 | allocation, | ||
| 15224 | userDataStr.GetString()); | ||
| 15225 | Flush(); | ||
| 15226 | } | ||
| 15227 | |||
| 15228 | void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex, | ||
| 15229 | VmaAllocation allocation) | ||
| 15230 | { | ||
| 15231 | CallParams callParams; | ||
| 15232 | GetBasicParams(callParams); | ||
| 15233 | |||
| 15234 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15235 | fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15236 | allocation); | ||
| 15237 | Flush(); | ||
| 15238 | } | ||
| 15239 | |||
| 15240 | void VmaRecorder::RecordDestroyImage(uint32_t frameIndex, | ||
| 15241 | VmaAllocation allocation) | ||
| 15242 | { | ||
| 15243 | CallParams callParams; | ||
| 15244 | GetBasicParams(callParams); | ||
| 15245 | |||
| 15246 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15247 | fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15248 | allocation); | ||
| 15249 | Flush(); | ||
| 15250 | } | ||
| 15251 | |||
| 15252 | void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex, | ||
| 15253 | VmaAllocation allocation) | ||
| 15254 | { | ||
| 15255 | CallParams callParams; | ||
| 15256 | GetBasicParams(callParams); | ||
| 15257 | |||
| 15258 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15259 | fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15260 | allocation); | ||
| 15261 | Flush(); | ||
| 15262 | } | ||
| 15263 | |||
| 15264 | void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex, | ||
| 15265 | VmaAllocation allocation) | ||
| 15266 | { | ||
| 15267 | CallParams callParams; | ||
| 15268 | GetBasicParams(callParams); | ||
| 15269 | |||
| 15270 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15271 | fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15272 | allocation); | ||
| 15273 | Flush(); | ||
| 15274 | } | ||
| 15275 | |||
| 15276 | void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex, | ||
| 15277 | VmaPool pool) | ||
| 15278 | { | ||
| 15279 | CallParams callParams; | ||
| 15280 | GetBasicParams(callParams); | ||
| 15281 | |||
| 15282 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15283 | fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15284 | pool); | ||
| 15285 | Flush(); | ||
| 15286 | } | ||
| 15287 | |||
| 15288 | void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex, | ||
| 15289 | const VmaDefragmentationInfo2& info, | ||
| 15290 | VmaDefragmentationContext ctx) | ||
| 15291 | { | ||
| 15292 | CallParams callParams; | ||
| 15293 | GetBasicParams(callParams); | ||
| 15294 | |||
| 15295 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15296 | fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u,", callParams.threadId, callParams.time, frameIndex, | ||
| 15297 | info.flags); | ||
| 15298 | PrintPointerList(info.allocationCount, info.pAllocations); | ||
| 15299 | fprintf(m_File, ","); | ||
| 15300 | PrintPointerList(info.poolCount, info.pPools); | ||
| 15301 | fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n", | ||
| 15302 | info.maxCpuBytesToMove, | ||
| 15303 | info.maxCpuAllocationsToMove, | ||
| 15304 | info.maxGpuBytesToMove, | ||
| 15305 | info.maxGpuAllocationsToMove, | ||
| 15306 | info.commandBuffer, | ||
| 15307 | ctx); | ||
| 15308 | Flush(); | ||
| 15309 | } | ||
| 15310 | |||
| 15311 | void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex, | ||
| 15312 | VmaDefragmentationContext ctx) | ||
| 15313 | { | ||
| 15314 | CallParams callParams; | ||
| 15315 | GetBasicParams(callParams); | ||
| 15316 | |||
| 15317 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15318 | fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15319 | ctx); | ||
| 15320 | Flush(); | ||
| 15321 | } | ||
| 15322 | |||
| 15323 | void VmaRecorder::RecordSetPoolName(uint32_t frameIndex, | ||
| 15324 | VmaPool pool, | ||
| 15325 | const char* name) | ||
| 15326 | { | ||
| 15327 | CallParams callParams; | ||
| 15328 | GetBasicParams(callParams); | ||
| 15329 | |||
| 15330 | VmaMutexLock lock(m_FileMutex, m_UseMutex); | ||
| 15331 | fprintf(m_File, "%u,%.3f,%u,vmaSetPoolName,%p,%s\n", callParams.threadId, callParams.time, frameIndex, | ||
| 15332 | pool, name != VMA_NULL ? name : ""); | ||
| 15333 | Flush(); | ||
| 15334 | } | ||
| 15335 | |||
| 15336 | VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData) | ||
| 15337 | { | ||
| 15338 | if (pUserData != VMA_NULL) | ||
| 15339 | { | ||
| 15340 | if ((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0) | ||
| 15341 | { | ||
| 15342 | m_Str = (const char*)pUserData; | ||
| 15343 | } | ||
| 15344 | else | ||
| 15345 | { | ||
| 15346 | // If VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is not specified, convert the string's memory address to a string and store it. | ||
| 15347 | snprintf(m_PtrStr, 17, "%p", pUserData); | ||
| 15348 | m_Str = m_PtrStr; | ||
| 15349 | } | ||
| 15350 | } | ||
| 15351 | else | ||
| 15352 | { | ||
| 15353 | m_Str = ""; | ||
| 15354 | } | ||
| 15355 | } | ||
| 15356 | |||
| 15357 | void VmaRecorder::WriteConfiguration( | ||
| 15358 | const VkPhysicalDeviceProperties& devProps, | ||
| 15359 | const VkPhysicalDeviceMemoryProperties& memProps, | ||
| 15360 | uint32_t vulkanApiVersion, | ||
| 15361 | bool dedicatedAllocationExtensionEnabled, | ||
| 15362 | bool bindMemory2ExtensionEnabled, | ||
| 15363 | bool memoryBudgetExtensionEnabled, | ||
| 15364 | bool deviceCoherentMemoryExtensionEnabled) | ||
| 15365 | { | ||
| 15366 | fprintf(m_File, "Config,Begin\n"); | ||
| 15367 | |||
| 15368 | fprintf(m_File, "VulkanApiVersion,%u,%u\n", VK_VERSION_MAJOR(vulkanApiVersion), VK_VERSION_MINOR(vulkanApiVersion)); | ||
| 15369 | |||
| 15370 | fprintf(m_File, "PhysicalDevice,apiVersion,%u\n", devProps.apiVersion); | ||
| 15371 | fprintf(m_File, "PhysicalDevice,driverVersion,%u\n", devProps.driverVersion); | ||
| 15372 | fprintf(m_File, "PhysicalDevice,vendorID,%u\n", devProps.vendorID); | ||
| 15373 | fprintf(m_File, "PhysicalDevice,deviceID,%u\n", devProps.deviceID); | ||
| 15374 | fprintf(m_File, "PhysicalDevice,deviceType,%u\n", devProps.deviceType); | ||
| 15375 | fprintf(m_File, "PhysicalDevice,deviceName,%s\n", devProps.deviceName); | ||
| 15376 | |||
| 15377 | fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n", devProps.limits.maxMemoryAllocationCount); | ||
| 15378 | fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n", devProps.limits.bufferImageGranularity); | ||
| 15379 | fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n", devProps.limits.nonCoherentAtomSize); | ||
| 15380 | |||
| 15381 | fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n", memProps.memoryHeapCount); | ||
| 15382 | for (uint32_t i = 0; i < memProps.memoryHeapCount; ++i) | ||
| 15383 | { | ||
| 15384 | fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n", i, memProps.memoryHeaps[i].size); | ||
| 15385 | fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n", i, memProps.memoryHeaps[i].flags); | ||
| 15386 | } | ||
| 15387 | fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n", memProps.memoryTypeCount); | ||
| 15388 | for (uint32_t i = 0; i < memProps.memoryTypeCount; ++i) | ||
| 15389 | { | ||
| 15390 | fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n", i, memProps.memoryTypes[i].heapIndex); | ||
| 15391 | fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n", i, memProps.memoryTypes[i].propertyFlags); | ||
| 15392 | } | ||
| 15393 | |||
| 15394 | fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n", dedicatedAllocationExtensionEnabled ? 1 : 0); | ||
| 15395 | fprintf(m_File, "Extension,VK_KHR_bind_memory2,%u\n", bindMemory2ExtensionEnabled ? 1 : 0); | ||
| 15396 | fprintf(m_File, "Extension,VK_EXT_memory_budget,%u\n", memoryBudgetExtensionEnabled ? 1 : 0); | ||
| 15397 | fprintf(m_File, "Extension,VK_AMD_device_coherent_memory,%u\n", deviceCoherentMemoryExtensionEnabled ? 1 : 0); | ||
| 15398 | |||
| 15399 | fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n", VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0); | ||
| 15400 | fprintf(m_File, "Macro,VMA_DEBUG_ALIGNMENT,%llu\n", (VkDeviceSize)VMA_DEBUG_ALIGNMENT); | ||
| 15401 | fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n", (VkDeviceSize)VMA_DEBUG_MARGIN); | ||
| 15402 | fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n", VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0); | ||
| 15403 | fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n", VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0); | ||
| 15404 | fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n", VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0); | ||
| 15405 | fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n", (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY); | ||
| 15406 | fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n", (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE); | ||
| 15407 | fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n", (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); | ||
| 15408 | |||
| 15409 | fprintf(m_File, "Config,End\n"); | ||
| 15410 | } | ||
| 15411 | |||
| 15412 | void VmaRecorder::GetBasicParams(CallParams& outParams) | ||
| 15413 | { | ||
| 15414 | #if defined(_WIN32) | ||
| 15415 | outParams.threadId = GetCurrentThreadId(); | ||
| 15416 | #else | ||
| 15417 | // Use C++11 features to get thread id and convert it to uint32_t. | ||
| 15418 | // There is room for optimization since sstream is quite slow. | ||
| 15419 | // Is there a better way to convert std::this_thread::get_id() to uint32_t? | ||
| 15420 | std::thread::id thread_id = std::this_thread::get_id(); | ||
| 15421 | stringstream thread_id_to_string_converter; | ||
| 15422 | thread_id_to_string_converter << thread_id; | ||
| 15423 | string thread_id_as_string = thread_id_to_string_converter.str(); | ||
| 15424 | outParams.threadId = static_cast<uint32_t>(std::stoi(thread_id_as_string.c_str())); | ||
| 15425 | #endif | ||
| 15426 | |||
| 15427 | auto current_time = std::chrono::high_resolution_clock::now(); | ||
| 15428 | |||
| 15429 | outParams.time = std::chrono::duration<double, std::chrono::seconds::period>(current_time - m_RecordingStartTime).count(); | ||
| 15430 | } | ||
| 15431 | |||
| 15432 | void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation* pItems) | ||
| 15433 | { | ||
| 15434 | if (count) | ||
| 15435 | { | ||
| 15436 | fprintf(m_File, "%p", pItems[0]); | ||
| 15437 | for (uint64_t i = 1; i < count; ++i) | ||
| 15438 | { | ||
| 15439 | fprintf(m_File, " %p", pItems[i]); | ||
| 15440 | } | ||
| 15441 | } | ||
| 15442 | } | ||
| 15443 | |||
| 15444 | void VmaRecorder::Flush() | ||
| 15445 | { | ||
| 15446 | if ((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0) | ||
| 15447 | { | ||
| 15448 | fflush(m_File); | ||
| 15449 | } | ||
| 15450 | } | ||
| 15451 | |||
| 15452 | #endif // #if VMA_RECORDING_ENABLED | ||
| 15453 | |||
| 15454 | //////////////////////////////////////////////////////////////////////////////// | ||
| 15455 | // VmaAllocationObjectAllocator | ||
| 15456 | |||
| 15457 | VmaAllocationObjectAllocator::VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) : | ||
| 15458 | ✗ | m_Allocator(pAllocationCallbacks, 1024) | |
| 15459 | { | ||
| 15460 | ✗ | } | |
| 15461 | |||
| 15462 | template<typename... Types> VmaAllocation VmaAllocationObjectAllocator::Allocate(Types... args) | ||
| 15463 | { | ||
| 15464 | ✗ | VmaMutexLock mutexLock(m_Mutex); | |
| 15465 | ✗ | return m_Allocator.Alloc<Types...>(std::forward<Types>(args)...); | |
| 15466 | ✗ | } | |
| 15467 | |||
| 15468 | void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc) | ||
| 15469 | { | ||
| 15470 | ✗ | VmaMutexLock mutexLock(m_Mutex); | |
| 15471 | ✗ | m_Allocator.Free(hAlloc); | |
| 15472 | ✗ | } | |
| 15473 | |||
| 15474 | //////////////////////////////////////////////////////////////////////////////// | ||
| 15475 | // VmaAllocator_T | ||
| 15476 | |||
| 15477 | VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) : | ||
| 15478 | ✗ | m_UseMutex((pCreateInfo->flags& VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0), | |
| 15479 | ✗ | m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0), | |
| 15480 | ✗ | m_UseKhrDedicatedAllocation((pCreateInfo->flags& VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0), | |
| 15481 | ✗ | m_UseKhrBindMemory2((pCreateInfo->flags& VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0), | |
| 15482 | ✗ | m_UseExtMemoryBudget((pCreateInfo->flags& VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0), | |
| 15483 | ✗ | m_UseAmdDeviceCoherentMemory((pCreateInfo->flags& VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0), | |
| 15484 | ✗ | m_UseKhrBufferDeviceAddress((pCreateInfo->flags& VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0), | |
| 15485 | ✗ | m_hDevice(pCreateInfo->device), | |
| 15486 | ✗ | m_hInstance(pCreateInfo->instance), | |
| 15487 | ✗ | m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL), | |
| 15488 | ✗ | m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ? | |
| 15489 | *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks), | ||
| 15490 | ✗ | m_AllocationObjectAllocator(&m_AllocationCallbacks), | |
| 15491 | ✗ | m_HeapSizeLimitMask(0), | |
| 15492 | ✗ | m_PreferredLargeHeapBlockSize(0), | |
| 15493 | ✗ | m_PhysicalDevice(pCreateInfo->physicalDevice), | |
| 15494 | ✗ | m_CurrentFrameIndex(0), | |
| 15495 | ✗ | m_GpuDefragmentationMemoryTypeBits(UINT32_MAX), | |
| 15496 | ✗ | m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks())), | |
| 15497 | ✗ | m_NextPoolId(0), | |
| 15498 | ✗ | m_GlobalMemoryTypeBits(UINT32_MAX) | |
| 15499 | #if VMA_RECORDING_ENABLED | ||
| 15500 | , m_pRecorder(VMA_NULL) | ||
| 15501 | #endif | ||
| 15502 | { | ||
| 15503 | ✗ | if (m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) | |
| 15504 | { | ||
| 15505 | ✗ | m_UseKhrDedicatedAllocation = false; | |
| 15506 | ✗ | m_UseKhrBindMemory2 = false; | |
| 15507 | } | ||
| 15508 | |||
| 15509 | if (VMA_DEBUG_DETECT_CORRUPTION) | ||
| 15510 | { | ||
| 15511 | // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it. | ||
| 15512 | VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0); | ||
| 15513 | } | ||
| 15514 | |||
| 15515 | ✗ | VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance); | |
| 15516 | |||
| 15517 | ✗ | if (m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0)) | |
| 15518 | { | ||
| 15519 | #if !(VMA_DEDICATED_ALLOCATION) | ||
| 15520 | if ((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) | ||
| 15521 | { | ||
| 15522 | VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros."); | ||
| 15523 | } | ||
| 15524 | #endif | ||
| 15525 | #if !(VMA_BIND_MEMORY2) | ||
| 15526 | if ((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0) | ||
| 15527 | { | ||
| 15528 | VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros."); | ||
| 15529 | } | ||
| 15530 | #endif | ||
| 15531 | } | ||
| 15532 | #if !(VMA_MEMORY_BUDGET) | ||
| 15533 | if ((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0) | ||
| 15534 | { | ||
| 15535 | VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros."); | ||
| 15536 | } | ||
| 15537 | #endif | ||
| 15538 | #if !(VMA_BUFFER_DEVICE_ADDRESS) | ||
| 15539 | if (m_UseKhrBufferDeviceAddress) | ||
| 15540 | { | ||
| 15541 | VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); | ||
| 15542 | } | ||
| 15543 | #endif | ||
| 15544 | #if VMA_VULKAN_VERSION < 1002000 | ||
| 15545 | if (m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0)) | ||
| 15546 | { | ||
| 15547 | VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros."); | ||
| 15548 | } | ||
| 15549 | #endif | ||
| 15550 | #if VMA_VULKAN_VERSION < 1001000 | ||
| 15551 | if (m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) | ||
| 15552 | { | ||
| 15553 | VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros."); | ||
| 15554 | } | ||
| 15555 | #endif | ||
| 15556 | |||
| 15557 | ✗ | memset(&m_DeviceMemoryCallbacks, 0, sizeof(m_DeviceMemoryCallbacks)); | |
| 15558 | ✗ | memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties)); | |
| 15559 | ✗ | memset(&m_MemProps, 0, sizeof(m_MemProps)); | |
| 15560 | |||
| 15561 | ✗ | memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors)); | |
| 15562 | ✗ | memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations)); | |
| 15563 | ✗ | memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions)); | |
| 15564 | |||
| 15565 | ✗ | if (pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) | |
| 15566 | { | ||
| 15567 | ✗ | m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData; | |
| 15568 | ✗ | m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate; | |
| 15569 | ✗ | m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree; | |
| 15570 | } | ||
| 15571 | |||
| 15572 | ✗ | ImportVulkanFunctions(pCreateInfo->pVulkanFunctions); | |
| 15573 | |||
| 15574 | ✗ | (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties); | |
| 15575 | ✗ | (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps); | |
| 15576 | |||
| 15577 | ✗ | VMA_ASSERT(VmaIsPow2(VMA_DEBUG_ALIGNMENT)); | |
| 15578 | ✗ | VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY)); | |
| 15579 | ✗ | VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity)); | |
| 15580 | ✗ | VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize)); | |
| 15581 | |||
| 15582 | ✗ | m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ? | |
| 15583 | pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); | ||
| 15584 | |||
| 15585 | ✗ | m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits(); | |
| 15586 | |||
| 15587 | ✗ | if (pCreateInfo->pHeapSizeLimit != VMA_NULL) | |
| 15588 | { | ||
| 15589 | ✗ | for (uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) | |
| 15590 | { | ||
| 15591 | ✗ | const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex]; | |
| 15592 | ✗ | if (limit != VK_WHOLE_SIZE) | |
| 15593 | { | ||
| 15594 | ✗ | m_HeapSizeLimitMask |= 1u << heapIndex; | |
| 15595 | ✗ | if (limit < m_MemProps.memoryHeaps[heapIndex].size) | |
| 15596 | { | ||
| 15597 | ✗ | m_MemProps.memoryHeaps[heapIndex].size = limit; | |
| 15598 | } | ||
| 15599 | } | ||
| 15600 | } | ||
| 15601 | } | ||
| 15602 | |||
| 15603 | ✗ | for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) | |
| 15604 | { | ||
| 15605 | ✗ | const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex); | |
| 15606 | |||
| 15607 | ✗ | m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( | |
| 15608 | this, | ||
| 15609 | VK_NULL_HANDLE, // hParentPool | ||
| 15610 | memTypeIndex, | ||
| 15611 | preferredBlockSize, | ||
| 15612 | 0, | ||
| 15613 | SIZE_MAX, | ||
| 15614 | GetBufferImageGranularity(), | ||
| 15615 | ✗ | pCreateInfo->frameInUseCount, | |
| 15616 | false, // explicitBlockSize | ||
| 15617 | ✗ | false); // linearAlgorithm | |
| 15618 | // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here, | ||
| 15619 | // becase minBlockCount is 0. | ||
| 15620 | ✗ | m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks())); | |
| 15621 | |||
| 15622 | } | ||
| 15623 | ✗ | } | |
| 15624 | |||
| 15625 | VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo) | ||
| 15626 | { | ||
| 15627 | ✗ | VkResult res = VK_SUCCESS; | |
| 15628 | |||
| 15629 | ✗ | if (pCreateInfo->pRecordSettings != VMA_NULL && | |
| 15630 | ✗ | !VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath)) | |
| 15631 | { | ||
| 15632 | #if VMA_RECORDING_ENABLED | ||
| 15633 | m_pRecorder = vma_new(this, VmaRecorder)(); | ||
| 15634 | res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex); | ||
| 15635 | if (res != VK_SUCCESS) | ||
| 15636 | { | ||
| 15637 | return res; | ||
| 15638 | } | ||
| 15639 | m_pRecorder->WriteConfiguration( | ||
| 15640 | m_PhysicalDeviceProperties, | ||
| 15641 | m_MemProps, | ||
| 15642 | m_VulkanApiVersion, | ||
| 15643 | m_UseKhrDedicatedAllocation, | ||
| 15644 | m_UseKhrBindMemory2, | ||
| 15645 | m_UseExtMemoryBudget, | ||
| 15646 | m_UseAmdDeviceCoherentMemory); | ||
| 15647 | m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex()); | ||
| 15648 | #else | ||
| 15649 | ✗ | VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1."); | |
| 15650 | return VK_ERROR_FEATURE_NOT_PRESENT; | ||
| 15651 | #endif | ||
| 15652 | } | ||
| 15653 | |||
| 15654 | #if VMA_MEMORY_BUDGET | ||
| 15655 | ✗ | if (m_UseExtMemoryBudget) | |
| 15656 | { | ||
| 15657 | ✗ | UpdateVulkanBudget(); | |
| 15658 | } | ||
| 15659 | #endif // #if VMA_MEMORY_BUDGET | ||
| 15660 | |||
| 15661 | ✗ | return res; | |
| 15662 | } | ||
| 15663 | |||
| 15664 | VmaAllocator_T::~VmaAllocator_T() | ||
| 15665 | { | ||
| 15666 | #if VMA_RECORDING_ENABLED | ||
| 15667 | if (m_pRecorder != VMA_NULL) | ||
| 15668 | { | ||
| 15669 | m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex()); | ||
| 15670 | vma_delete(this, m_pRecorder); | ||
| 15671 | } | ||
| 15672 | #endif | ||
| 15673 | |||
| 15674 | ✗ | VMA_ASSERT(m_Pools.empty()); | |
| 15675 | |||
| 15676 | ✗ | for (size_t i = GetMemoryTypeCount(); i--; ) | |
| 15677 | { | ||
| 15678 | ✗ | if (m_pDedicatedAllocations[i] != VMA_NULL && !m_pDedicatedAllocations[i]->empty()) | |
| 15679 | { | ||
| 15680 | ✗ | VMA_ASSERT(0 && "Unfreed dedicated allocations found."); | |
| 15681 | } | ||
| 15682 | |||
| 15683 | ✗ | vma_delete(this, m_pDedicatedAllocations[i]); | |
| 15684 | ✗ | vma_delete(this, m_pBlockVectors[i]); | |
| 15685 | } | ||
| 15686 | ✗ | } | |
| 15687 | |||
| 15688 | void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions) | ||
| 15689 | { | ||
| 15690 | #if VMA_STATIC_VULKAN_FUNCTIONS == 1 | ||
| 15691 | ✗ | ImportVulkanFunctions_Static(); | |
| 15692 | #endif | ||
| 15693 | |||
| 15694 | ✗ | if (pVulkanFunctions != VMA_NULL) | |
| 15695 | { | ||
| 15696 | ✗ | ImportVulkanFunctions_Custom(pVulkanFunctions); | |
| 15697 | } | ||
| 15698 | |||
| 15699 | #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 | ||
| 15700 | ✗ | ImportVulkanFunctions_Dynamic(); | |
| 15701 | #endif | ||
| 15702 | |||
| 15703 | ✗ | ValidateVulkanFunctions(); | |
| 15704 | ✗ | } | |
| 15705 | |||
| 15706 | #if VMA_STATIC_VULKAN_FUNCTIONS == 1 | ||
| 15707 | |||
| 15708 | void VmaAllocator_T::ImportVulkanFunctions_Static() | ||
| 15709 | { | ||
| 15710 | // Vulkan 1.0 | ||
| 15711 | ✗ | m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties; | |
| 15712 | ✗ | m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties; | |
| 15713 | ✗ | m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; | |
| 15714 | ✗ | m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory; | |
| 15715 | ✗ | m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory; | |
| 15716 | ✗ | m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory; | |
| 15717 | ✗ | m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges; | |
| 15718 | ✗ | m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges; | |
| 15719 | ✗ | m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory; | |
| 15720 | ✗ | m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory; | |
| 15721 | ✗ | m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements; | |
| 15722 | ✗ | m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements; | |
| 15723 | ✗ | m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer; | |
| 15724 | ✗ | m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer; | |
| 15725 | ✗ | m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage; | |
| 15726 | ✗ | m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage; | |
| 15727 | ✗ | m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer; | |
| 15728 | |||
| 15729 | // Vulkan 1.1 | ||
| 15730 | #if VMA_VULKAN_VERSION >= 1001000 | ||
| 15731 | ✗ | if (m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) | |
| 15732 | { | ||
| 15733 | ✗ | m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2; | |
| 15734 | ✗ | m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2; | |
| 15735 | ✗ | m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2; | |
| 15736 | ✗ | m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2; | |
| 15737 | ✗ | m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2; | |
| 15738 | } | ||
| 15739 | #endif | ||
| 15740 | ✗ | } | |
| 15741 | |||
| 15742 | #endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1 | ||
| 15743 | |||
| 15744 | void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions) | ||
| 15745 | { | ||
| 15746 | ✗ | VMA_ASSERT(pVulkanFunctions != VMA_NULL); | |
| 15747 | |||
| 15748 | #define VMA_COPY_IF_NOT_NULL(funcName) \ | ||
| 15749 | if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName; | ||
| 15750 | |||
| 15751 | ✗ | VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties); | |
| 15752 | ✗ | VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties); | |
| 15753 | ✗ | VMA_COPY_IF_NOT_NULL(vkAllocateMemory); | |
| 15754 | ✗ | VMA_COPY_IF_NOT_NULL(vkFreeMemory); | |
| 15755 | ✗ | VMA_COPY_IF_NOT_NULL(vkMapMemory); | |
| 15756 | ✗ | VMA_COPY_IF_NOT_NULL(vkUnmapMemory); | |
| 15757 | ✗ | VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges); | |
| 15758 | ✗ | VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges); | |
| 15759 | ✗ | VMA_COPY_IF_NOT_NULL(vkBindBufferMemory); | |
| 15760 | ✗ | VMA_COPY_IF_NOT_NULL(vkBindImageMemory); | |
| 15761 | ✗ | VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements); | |
| 15762 | ✗ | VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements); | |
| 15763 | ✗ | VMA_COPY_IF_NOT_NULL(vkCreateBuffer); | |
| 15764 | ✗ | VMA_COPY_IF_NOT_NULL(vkDestroyBuffer); | |
| 15765 | ✗ | VMA_COPY_IF_NOT_NULL(vkCreateImage); | |
| 15766 | ✗ | VMA_COPY_IF_NOT_NULL(vkDestroyImage); | |
| 15767 | ✗ | VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer); | |
| 15768 | |||
| 15769 | #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 | ||
| 15770 | ✗ | VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR); | |
| 15771 | ✗ | VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR); | |
| 15772 | #endif | ||
| 15773 | |||
| 15774 | #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 | ||
| 15775 | ✗ | VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR); | |
| 15776 | ✗ | VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR); | |
| 15777 | #endif | ||
| 15778 | |||
| 15779 | #if VMA_MEMORY_BUDGET | ||
| 15780 | ✗ | VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR); | |
| 15781 | #endif | ||
| 15782 | |||
| 15783 | #undef VMA_COPY_IF_NOT_NULL | ||
| 15784 | ✗ | } | |
| 15785 | |||
| 15786 | #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 | ||
| 15787 | |||
| 15788 | void VmaAllocator_T::ImportVulkanFunctions_Dynamic() | ||
| 15789 | { | ||
| 15790 | #define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \ | ||
| 15791 | if(m_VulkanFunctions.memberName == VMA_NULL) \ | ||
| 15792 | m_VulkanFunctions.memberName = \ | ||
| 15793 | (functionPointerType)vkGetInstanceProcAddr(m_hInstance, functionNameString); | ||
| 15794 | #define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \ | ||
| 15795 | if(m_VulkanFunctions.memberName == VMA_NULL) \ | ||
| 15796 | m_VulkanFunctions.memberName = \ | ||
| 15797 | (functionPointerType)vkGetDeviceProcAddr(m_hDevice, functionNameString); | ||
| 15798 | |||
| 15799 | ✗ | VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties"); | |
| 15800 | ✗ | VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties"); | |
| 15801 | ✗ | VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory"); | |
| 15802 | ✗ | VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory"); | |
| 15803 | ✗ | VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory"); | |
| 15804 | ✗ | VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory"); | |
| 15805 | ✗ | VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges"); | |
| 15806 | ✗ | VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges"); | |
| 15807 | ✗ | VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory"); | |
| 15808 | ✗ | VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory"); | |
| 15809 | ✗ | VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements"); | |
| 15810 | ✗ | VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements"); | |
| 15811 | ✗ | VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer"); | |
| 15812 | ✗ | VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer"); | |
| 15813 | ✗ | VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage"); | |
| 15814 | ✗ | VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage"); | |
| 15815 | ✗ | VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer"); | |
| 15816 | |||
| 15817 | #if VMA_VULKAN_VERSION >= 1001000 | ||
| 15818 | ✗ | if (m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) | |
| 15819 | { | ||
| 15820 | ✗ | VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2"); | |
| 15821 | ✗ | VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2"); | |
| 15822 | ✗ | VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2"); | |
| 15823 | ✗ | VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2"); | |
| 15824 | ✗ | VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2, "vkGetPhysicalDeviceMemoryProperties2"); | |
| 15825 | } | ||
| 15826 | #endif | ||
| 15827 | |||
| 15828 | #if VMA_DEDICATED_ALLOCATION | ||
| 15829 | ✗ | if (m_UseKhrDedicatedAllocation) | |
| 15830 | { | ||
| 15831 | ✗ | VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR"); | |
| 15832 | ✗ | VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR"); | |
| 15833 | } | ||
| 15834 | #endif | ||
| 15835 | |||
| 15836 | #if VMA_BIND_MEMORY2 | ||
| 15837 | ✗ | if (m_UseKhrBindMemory2) | |
| 15838 | { | ||
| 15839 | ✗ | VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR"); | |
| 15840 | ✗ | VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR"); | |
| 15841 | } | ||
| 15842 | #endif // #if VMA_BIND_MEMORY2 | ||
| 15843 | |||
| 15844 | #if VMA_MEMORY_BUDGET | ||
| 15845 | ✗ | if (m_UseExtMemoryBudget) | |
| 15846 | { | ||
| 15847 | ✗ | VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR"); | |
| 15848 | } | ||
| 15849 | #endif // #if VMA_MEMORY_BUDGET | ||
| 15850 | |||
| 15851 | #undef VMA_FETCH_DEVICE_FUNC | ||
| 15852 | #undef VMA_FETCH_INSTANCE_FUNC | ||
| 15853 | ✗ | } | |
| 15854 | |||
| 15855 | #endif // #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 | ||
| 15856 | |||
| 15857 | void VmaAllocator_T::ValidateVulkanFunctions() | ||
| 15858 | { | ||
| 15859 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL); | |
| 15860 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL); | |
| 15861 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL); | |
| 15862 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL); | |
| 15863 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL); | |
| 15864 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL); | |
| 15865 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL); | |
| 15866 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL); | |
| 15867 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL); | |
| 15868 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL); | |
| 15869 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL); | |
| 15870 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL); | |
| 15871 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL); | |
| 15872 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL); | |
| 15873 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL); | |
| 15874 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL); | |
| 15875 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL); | |
| 15876 | |||
| 15877 | #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 | ||
| 15878 | ✗ | if (m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation) | |
| 15879 | { | ||
| 15880 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL); | |
| 15881 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL); | |
| 15882 | } | ||
| 15883 | #endif | ||
| 15884 | |||
| 15885 | #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 | ||
| 15886 | ✗ | if (m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2) | |
| 15887 | { | ||
| 15888 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL); | |
| 15889 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL); | |
| 15890 | } | ||
| 15891 | #endif | ||
| 15892 | |||
| 15893 | #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 | ||
| 15894 | ✗ | if (m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) | |
| 15895 | { | ||
| 15896 | ✗ | VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL); | |
| 15897 | } | ||
| 15898 | #endif | ||
| 15899 | ✗ | } | |
| 15900 | |||
| 15901 | VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) | ||
| 15902 | { | ||
| 15903 | ✗ | const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); | |
| 15904 | ✗ | const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; | |
| 15905 | ✗ | const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE; | |
| 15906 | ✗ | return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32); | |
| 15907 | } | ||
| 15908 | |||
| 15909 | VkResult VmaAllocator_T::AllocateMemoryOfType( | ||
| 15910 | VkDeviceSize size, | ||
| 15911 | VkDeviceSize alignment, | ||
| 15912 | bool dedicatedAllocation, | ||
| 15913 | VkBuffer dedicatedBuffer, | ||
| 15914 | VkBufferUsageFlags dedicatedBufferUsage, | ||
| 15915 | VkImage dedicatedImage, | ||
| 15916 | const VmaAllocationCreateInfo& createInfo, | ||
| 15917 | uint32_t memTypeIndex, | ||
| 15918 | VmaSuballocationType suballocType, | ||
| 15919 | size_t allocationCount, | ||
| 15920 | VmaAllocation* pAllocations) | ||
| 15921 | { | ||
| 15922 | ✗ | VMA_ASSERT(pAllocations != VMA_NULL); | |
| 15923 | VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size); | ||
| 15924 | |||
| 15925 | ✗ | VmaAllocationCreateInfo finalCreateInfo = createInfo; | |
| 15926 | |||
| 15927 | // If memory type is not HOST_VISIBLE, disable MAPPED. | ||
| 15928 | ✗ | if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && | |
| 15929 | ✗ | (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) | |
| 15930 | { | ||
| 15931 | ✗ | finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; | |
| 15932 | } | ||
| 15933 | // If memory is lazily allocated, it should be always dedicated. | ||
| 15934 | ✗ | if (finalCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED) | |
| 15935 | { | ||
| 15936 | ✗ | finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; | |
| 15937 | } | ||
| 15938 | |||
| 15939 | ✗ | VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex]; | |
| 15940 | ✗ | VMA_ASSERT(blockVector); | |
| 15941 | |||
| 15942 | ✗ | const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize(); | |
| 15943 | ✗ | bool preferDedicatedMemory = | |
| 15944 | VMA_DEBUG_ALWAYS_DEDICATED_MEMORY || | ||
| 15945 | ✗ | dedicatedAllocation || | |
| 15946 | // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size. | ||
| 15947 | ✗ | size > preferredBlockSize / 2; | |
| 15948 | |||
| 15949 | ✗ | if (preferDedicatedMemory && | |
| 15950 | ✗ | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 && | |
| 15951 | ✗ | finalCreateInfo.pool == VK_NULL_HANDLE) | |
| 15952 | { | ||
| 15953 | ✗ | finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; | |
| 15954 | } | ||
| 15955 | |||
| 15956 | ✗ | if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) | |
| 15957 | { | ||
| 15958 | ✗ | if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) | |
| 15959 | { | ||
| 15960 | ✗ | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | |
| 15961 | } | ||
| 15962 | else | ||
| 15963 | { | ||
| 15964 | ✗ | return AllocateDedicatedMemory( | |
| 15965 | size, | ||
| 15966 | suballocType, | ||
| 15967 | memTypeIndex, | ||
| 15968 | ✗ | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0, | |
| 15969 | ✗ | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, | |
| 15970 | ✗ | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, | |
| 15971 | finalCreateInfo.pUserData, | ||
| 15972 | dedicatedBuffer, | ||
| 15973 | dedicatedBufferUsage, | ||
| 15974 | dedicatedImage, | ||
| 15975 | allocationCount, | ||
| 15976 | ✗ | pAllocations); | |
| 15977 | } | ||
| 15978 | } | ||
| 15979 | else | ||
| 15980 | { | ||
| 15981 | ✗ | VkResult res = blockVector->Allocate( | |
| 15982 | m_CurrentFrameIndex.load(), | ||
| 15983 | size, | ||
| 15984 | alignment, | ||
| 15985 | finalCreateInfo, | ||
| 15986 | suballocType, | ||
| 15987 | allocationCount, | ||
| 15988 | pAllocations); | ||
| 15989 | ✗ | if (res == VK_SUCCESS) | |
| 15990 | { | ||
| 15991 | ✗ | return res; | |
| 15992 | } | ||
| 15993 | |||
| 15994 | // 5. Try dedicated memory. | ||
| 15995 | ✗ | if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) | |
| 15996 | { | ||
| 15997 | ✗ | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | |
| 15998 | } | ||
| 15999 | else | ||
| 16000 | { | ||
| 16001 | ✗ | res = AllocateDedicatedMemory( | |
| 16002 | size, | ||
| 16003 | suballocType, | ||
| 16004 | memTypeIndex, | ||
| 16005 | ✗ | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0, | |
| 16006 | ✗ | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, | |
| 16007 | ✗ | (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, | |
| 16008 | finalCreateInfo.pUserData, | ||
| 16009 | dedicatedBuffer, | ||
| 16010 | dedicatedBufferUsage, | ||
| 16011 | dedicatedImage, | ||
| 16012 | allocationCount, | ||
| 16013 | pAllocations); | ||
| 16014 | ✗ | if (res == VK_SUCCESS) | |
| 16015 | { | ||
| 16016 | // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. | ||
| 16017 | VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); | ||
| 16018 | ✗ | return VK_SUCCESS; | |
| 16019 | } | ||
| 16020 | else | ||
| 16021 | { | ||
| 16022 | // Everything failed: Return error code. | ||
| 16023 | VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); | ||
| 16024 | ✗ | return res; | |
| 16025 | } | ||
| 16026 | } | ||
| 16027 | } | ||
| 16028 | } | ||
| 16029 | |||
| 16030 | VkResult VmaAllocator_T::AllocateDedicatedMemory( | ||
| 16031 | VkDeviceSize size, | ||
| 16032 | VmaSuballocationType suballocType, | ||
| 16033 | uint32_t memTypeIndex, | ||
| 16034 | bool withinBudget, | ||
| 16035 | bool map, | ||
| 16036 | bool isUserDataString, | ||
| 16037 | void* pUserData, | ||
| 16038 | VkBuffer dedicatedBuffer, | ||
| 16039 | VkBufferUsageFlags dedicatedBufferUsage, | ||
| 16040 | VkImage dedicatedImage, | ||
| 16041 | size_t allocationCount, | ||
| 16042 | VmaAllocation* pAllocations) | ||
| 16043 | { | ||
| 16044 | ✗ | VMA_ASSERT(allocationCount > 0 && pAllocations); | |
| 16045 | |||
| 16046 | ✗ | if (withinBudget) | |
| 16047 | { | ||
| 16048 | ✗ | const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); | |
| 16049 | ✗ | VmaBudget heapBudget = {}; | |
| 16050 | ✗ | GetBudget(&heapBudget, heapIndex, 1); | |
| 16051 | ✗ | if (heapBudget.usage + size * allocationCount > heapBudget.budget) | |
| 16052 | { | ||
| 16053 | ✗ | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | |
| 16054 | } | ||
| 16055 | } | ||
| 16056 | |||
| 16057 | ✗ | VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; | |
| 16058 | ✗ | allocInfo.memoryTypeIndex = memTypeIndex; | |
| 16059 | ✗ | allocInfo.allocationSize = size; | |
| 16060 | |||
| 16061 | #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 | ||
| 16062 | ✗ | VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR }; | |
| 16063 | ✗ | if (m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) | |
| 16064 | { | ||
| 16065 | ✗ | if (dedicatedBuffer != VK_NULL_HANDLE) | |
| 16066 | { | ||
| 16067 | ✗ | VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE); | |
| 16068 | ✗ | dedicatedAllocInfo.buffer = dedicatedBuffer; | |
| 16069 | ✗ | VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); | |
| 16070 | } | ||
| 16071 | ✗ | else if (dedicatedImage != VK_NULL_HANDLE) | |
| 16072 | { | ||
| 16073 | ✗ | dedicatedAllocInfo.image = dedicatedImage; | |
| 16074 | ✗ | VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); | |
| 16075 | } | ||
| 16076 | } | ||
| 16077 | #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 | ||
| 16078 | |||
| 16079 | #if VMA_BUFFER_DEVICE_ADDRESS | ||
| 16080 | ✗ | VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; | |
| 16081 | ✗ | if (m_UseKhrBufferDeviceAddress) | |
| 16082 | { | ||
| 16083 | ✗ | bool canContainBufferWithDeviceAddress = true; | |
| 16084 | ✗ | if (dedicatedBuffer != VK_NULL_HANDLE) | |
| 16085 | { | ||
| 16086 | ✗ | canContainBufferWithDeviceAddress = dedicatedBufferUsage == UINT32_MAX || // Usage flags unknown | |
| 16087 | ✗ | (dedicatedBufferUsage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) != 0; | |
| 16088 | } | ||
| 16089 | ✗ | else if (dedicatedImage != VK_NULL_HANDLE) | |
| 16090 | { | ||
| 16091 | ✗ | canContainBufferWithDeviceAddress = false; | |
| 16092 | } | ||
| 16093 | ✗ | if (canContainBufferWithDeviceAddress) | |
| 16094 | { | ||
| 16095 | ✗ | allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; | |
| 16096 | ✗ | VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); | |
| 16097 | } | ||
| 16098 | } | ||
| 16099 | #endif // #if VMA_BUFFER_DEVICE_ADDRESS | ||
| 16100 | |||
| 16101 | size_t allocIndex; | ||
| 16102 | ✗ | VkResult res = VK_SUCCESS; | |
| 16103 | ✗ | for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) | |
| 16104 | { | ||
| 16105 | ✗ | res = AllocateDedicatedMemoryPage( | |
| 16106 | size, | ||
| 16107 | suballocType, | ||
| 16108 | memTypeIndex, | ||
| 16109 | allocInfo, | ||
| 16110 | map, | ||
| 16111 | isUserDataString, | ||
| 16112 | pUserData, | ||
| 16113 | ✗ | pAllocations + allocIndex); | |
| 16114 | ✗ | if (res != VK_SUCCESS) | |
| 16115 | { | ||
| 16116 | ✗ | break; | |
| 16117 | } | ||
| 16118 | } | ||
| 16119 | |||
| 16120 | ✗ | if (res == VK_SUCCESS) | |
| 16121 | { | ||
| 16122 | // Register them in m_pDedicatedAllocations. | ||
| 16123 | { | ||
| 16124 | ✗ | VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); | |
| 16125 | ✗ | AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex]; | |
| 16126 | ✗ | VMA_ASSERT(pDedicatedAllocations); | |
| 16127 | ✗ | for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) | |
| 16128 | { | ||
| 16129 | ✗ | VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, pAllocations[allocIndex]); | |
| 16130 | } | ||
| 16131 | ✗ | } | |
| 16132 | |||
| 16133 | VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex); | ||
| 16134 | } | ||
| 16135 | else | ||
| 16136 | { | ||
| 16137 | // Free all already created allocations. | ||
| 16138 | ✗ | while (allocIndex--) | |
| 16139 | { | ||
| 16140 | ✗ | VmaAllocation currAlloc = pAllocations[allocIndex]; | |
| 16141 | ✗ | VkDeviceMemory hMemory = currAlloc->GetMemory(); | |
| 16142 | |||
| 16143 | /* | ||
| 16144 | There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory | ||
| 16145 | before vkFreeMemory. | ||
| 16146 | |||
| 16147 | if(currAlloc->GetMappedData() != VMA_NULL) | ||
| 16148 | { | ||
| 16149 | (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); | ||
| 16150 | } | ||
| 16151 | */ | ||
| 16152 | |||
| 16153 | ✗ | FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory); | |
| 16154 | ✗ | m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize()); | |
| 16155 | ✗ | currAlloc->SetUserData(this, VMA_NULL); | |
| 16156 | ✗ | m_AllocationObjectAllocator.Free(currAlloc); | |
| 16157 | } | ||
| 16158 | |||
| 16159 | ✗ | memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); | |
| 16160 | } | ||
| 16161 | |||
| 16162 | ✗ | return res; | |
| 16163 | } | ||
| 16164 | |||
| 16165 | VkResult VmaAllocator_T::AllocateDedicatedMemoryPage( | ||
| 16166 | VkDeviceSize size, | ||
| 16167 | VmaSuballocationType suballocType, | ||
| 16168 | uint32_t memTypeIndex, | ||
| 16169 | const VkMemoryAllocateInfo& allocInfo, | ||
| 16170 | bool map, | ||
| 16171 | bool isUserDataString, | ||
| 16172 | void* pUserData, | ||
| 16173 | VmaAllocation* pAllocation) | ||
| 16174 | { | ||
| 16175 | ✗ | VkDeviceMemory hMemory = VK_NULL_HANDLE; | |
| 16176 | ✗ | VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory); | |
| 16177 | ✗ | if (res < 0) | |
| 16178 | { | ||
| 16179 | VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); | ||
| 16180 | ✗ | return res; | |
| 16181 | } | ||
| 16182 | |||
| 16183 | ✗ | void* pMappedData = VMA_NULL; | |
| 16184 | ✗ | if (map) | |
| 16185 | { | ||
| 16186 | ✗ | res = (*m_VulkanFunctions.vkMapMemory)( | |
| 16187 | m_hDevice, | ||
| 16188 | hMemory, | ||
| 16189 | 0, | ||
| 16190 | VK_WHOLE_SIZE, | ||
| 16191 | 0, | ||
| 16192 | &pMappedData); | ||
| 16193 | ✗ | if (res < 0) | |
| 16194 | { | ||
| 16195 | VMA_DEBUG_LOG(" vkMapMemory FAILED"); | ||
| 16196 | ✗ | FreeVulkanMemory(memTypeIndex, size, hMemory); | |
| 16197 | ✗ | return res; | |
| 16198 | } | ||
| 16199 | } | ||
| 16200 | |||
| 16201 | ✗ | *pAllocation = m_AllocationObjectAllocator.Allocate(m_CurrentFrameIndex.load(), isUserDataString); | |
| 16202 | ✗ | (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size); | |
| 16203 | ✗ | (*pAllocation)->SetUserData(this, pUserData); | |
| 16204 | ✗ | m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size); | |
| 16205 | if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) | ||
| 16206 | { | ||
| 16207 | FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); | ||
| 16208 | } | ||
| 16209 | |||
| 16210 | ✗ | return VK_SUCCESS; | |
| 16211 | } | ||
| 16212 | |||
| 16213 | void VmaAllocator_T::GetBufferMemoryRequirements( | ||
| 16214 | VkBuffer hBuffer, | ||
| 16215 | VkMemoryRequirements& memReq, | ||
| 16216 | bool& requiresDedicatedAllocation, | ||
| 16217 | bool& prefersDedicatedAllocation) const | ||
| 16218 | { | ||
| 16219 | #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 | ||
| 16220 | ✗ | if (m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) | |
| 16221 | { | ||
| 16222 | ✗ | VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR }; | |
| 16223 | ✗ | memReqInfo.buffer = hBuffer; | |
| 16224 | |||
| 16225 | ✗ | VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; | |
| 16226 | |||
| 16227 | ✗ | VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; | |
| 16228 | ✗ | VmaPnextChainPushFront(&memReq2, &memDedicatedReq); | |
| 16229 | |||
| 16230 | ✗ | (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); | |
| 16231 | |||
| 16232 | ✗ | memReq = memReq2.memoryRequirements; | |
| 16233 | ✗ | requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); | |
| 16234 | ✗ | prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); | |
| 16235 | ✗ | } | |
| 16236 | else | ||
| 16237 | #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 | ||
| 16238 | { | ||
| 16239 | ✗ | (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq); | |
| 16240 | ✗ | requiresDedicatedAllocation = false; | |
| 16241 | ✗ | prefersDedicatedAllocation = false; | |
| 16242 | } | ||
| 16243 | ✗ | } | |
| 16244 | |||
| 16245 | void VmaAllocator_T::GetImageMemoryRequirements( | ||
| 16246 | VkImage hImage, | ||
| 16247 | VkMemoryRequirements& memReq, | ||
| 16248 | bool& requiresDedicatedAllocation, | ||
| 16249 | bool& prefersDedicatedAllocation) const | ||
| 16250 | { | ||
| 16251 | #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 | ||
| 16252 | ✗ | if (m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) | |
| 16253 | { | ||
| 16254 | ✗ | VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR }; | |
| 16255 | ✗ | memReqInfo.image = hImage; | |
| 16256 | |||
| 16257 | ✗ | VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; | |
| 16258 | |||
| 16259 | ✗ | VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; | |
| 16260 | ✗ | VmaPnextChainPushFront(&memReq2, &memDedicatedReq); | |
| 16261 | |||
| 16262 | ✗ | (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); | |
| 16263 | |||
| 16264 | ✗ | memReq = memReq2.memoryRequirements; | |
| 16265 | ✗ | requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); | |
| 16266 | ✗ | prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); | |
| 16267 | ✗ | } | |
| 16268 | else | ||
| 16269 | #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 | ||
| 16270 | { | ||
| 16271 | ✗ | (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq); | |
| 16272 | ✗ | requiresDedicatedAllocation = false; | |
| 16273 | ✗ | prefersDedicatedAllocation = false; | |
| 16274 | } | ||
| 16275 | ✗ | } | |
| 16276 | |||
| 16277 | VkResult VmaAllocator_T::AllocateMemory( | ||
| 16278 | const VkMemoryRequirements& vkMemReq, | ||
| 16279 | bool requiresDedicatedAllocation, | ||
| 16280 | bool prefersDedicatedAllocation, | ||
| 16281 | VkBuffer dedicatedBuffer, | ||
| 16282 | VkBufferUsageFlags dedicatedBufferUsage, | ||
| 16283 | VkImage dedicatedImage, | ||
| 16284 | const VmaAllocationCreateInfo& createInfo, | ||
| 16285 | VmaSuballocationType suballocType, | ||
| 16286 | size_t allocationCount, | ||
| 16287 | VmaAllocation* pAllocations) | ||
| 16288 | { | ||
| 16289 | ✗ | memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); | |
| 16290 | |||
| 16291 | ✗ | VMA_ASSERT(VmaIsPow2(vkMemReq.alignment)); | |
| 16292 | |||
| 16293 | ✗ | if (vkMemReq.size == 0) | |
| 16294 | { | ||
| 16295 | ✗ | return VK_ERROR_VALIDATION_FAILED_EXT; | |
| 16296 | } | ||
| 16297 | ✗ | if ((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && | |
| 16298 | ✗ | (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) | |
| 16299 | { | ||
| 16300 | ✗ | VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense."); | |
| 16301 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | ||
| 16302 | } | ||
| 16303 | ✗ | if ((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && | |
| 16304 | ✗ | (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0) | |
| 16305 | { | ||
| 16306 | ✗ | VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid."); | |
| 16307 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | ||
| 16308 | } | ||
| 16309 | ✗ | if (requiresDedicatedAllocation) | |
| 16310 | { | ||
| 16311 | ✗ | if ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) | |
| 16312 | { | ||
| 16313 | ✗ | VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required."); | |
| 16314 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | ||
| 16315 | } | ||
| 16316 | ✗ | if (createInfo.pool != VK_NULL_HANDLE) | |
| 16317 | { | ||
| 16318 | ✗ | VMA_ASSERT(0 && "Pool specified while dedicated allocation is required."); | |
| 16319 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | ||
| 16320 | } | ||
| 16321 | } | ||
| 16322 | ✗ | if ((createInfo.pool != VK_NULL_HANDLE) && | |
| 16323 | ✗ | ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0)) | |
| 16324 | { | ||
| 16325 | ✗ | VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid."); | |
| 16326 | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | ||
| 16327 | } | ||
| 16328 | |||
| 16329 | ✗ | if (createInfo.pool != VK_NULL_HANDLE) | |
| 16330 | { | ||
| 16331 | ✗ | const VkDeviceSize alignmentForPool = VMA_MAX( | |
| 16332 | vkMemReq.alignment, | ||
| 16333 | GetMemoryTypeMinAlignment(createInfo.pool->m_BlockVector.GetMemoryTypeIndex())); | ||
| 16334 | |||
| 16335 | ✗ | VmaAllocationCreateInfo createInfoForPool = createInfo; | |
| 16336 | // If memory type is not HOST_VISIBLE, disable MAPPED. | ||
| 16337 | ✗ | if ((createInfoForPool.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && | |
| 16338 | ✗ | (m_MemProps.memoryTypes[createInfo.pool->m_BlockVector.GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) | |
| 16339 | { | ||
| 16340 | ✗ | createInfoForPool.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; | |
| 16341 | } | ||
| 16342 | |||
| 16343 | ✗ | return createInfo.pool->m_BlockVector.Allocate( | |
| 16344 | m_CurrentFrameIndex.load(), | ||
| 16345 | ✗ | vkMemReq.size, | |
| 16346 | alignmentForPool, | ||
| 16347 | createInfoForPool, | ||
| 16348 | suballocType, | ||
| 16349 | allocationCount, | ||
| 16350 | ✗ | pAllocations); | |
| 16351 | } | ||
| 16352 | else | ||
| 16353 | { | ||
| 16354 | // Bit mask of memory Vulkan types acceptable for this allocation. | ||
| 16355 | ✗ | uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; | |
| 16356 | ✗ | uint32_t memTypeIndex = UINT32_MAX; | |
| 16357 | ✗ | VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); | |
| 16358 | ✗ | if (res == VK_SUCCESS) | |
| 16359 | { | ||
| 16360 | ✗ | VkDeviceSize alignmentForMemType = VMA_MAX( | |
| 16361 | vkMemReq.alignment, | ||
| 16362 | GetMemoryTypeMinAlignment(memTypeIndex)); | ||
| 16363 | |||
| 16364 | ✗ | res = AllocateMemoryOfType( | |
| 16365 | ✗ | vkMemReq.size, | |
| 16366 | alignmentForMemType, | ||
| 16367 | ✗ | requiresDedicatedAllocation || prefersDedicatedAllocation, | |
| 16368 | dedicatedBuffer, | ||
| 16369 | dedicatedBufferUsage, | ||
| 16370 | dedicatedImage, | ||
| 16371 | createInfo, | ||
| 16372 | memTypeIndex, | ||
| 16373 | suballocType, | ||
| 16374 | allocationCount, | ||
| 16375 | pAllocations); | ||
| 16376 | // Succeeded on first try. | ||
| 16377 | ✗ | if (res == VK_SUCCESS) | |
| 16378 | { | ||
| 16379 | ✗ | return res; | |
| 16380 | } | ||
| 16381 | // Allocation from this memory type failed. Try other compatible memory types. | ||
| 16382 | else | ||
| 16383 | { | ||
| 16384 | for (;;) | ||
| 16385 | { | ||
| 16386 | // Remove old memTypeIndex from list of possibilities. | ||
| 16387 | ✗ | memoryTypeBits &= ~(1u << memTypeIndex); | |
| 16388 | // Find alternative memTypeIndex. | ||
| 16389 | ✗ | res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); | |
| 16390 | ✗ | if (res == VK_SUCCESS) | |
| 16391 | { | ||
| 16392 | ✗ | alignmentForMemType = VMA_MAX( | |
| 16393 | vkMemReq.alignment, | ||
| 16394 | GetMemoryTypeMinAlignment(memTypeIndex)); | ||
| 16395 | |||
| 16396 | ✗ | res = AllocateMemoryOfType( | |
| 16397 | ✗ | vkMemReq.size, | |
| 16398 | alignmentForMemType, | ||
| 16399 | ✗ | requiresDedicatedAllocation || prefersDedicatedAllocation, | |
| 16400 | dedicatedBuffer, | ||
| 16401 | dedicatedBufferUsage, | ||
| 16402 | dedicatedImage, | ||
| 16403 | createInfo, | ||
| 16404 | memTypeIndex, | ||
| 16405 | suballocType, | ||
| 16406 | allocationCount, | ||
| 16407 | pAllocations); | ||
| 16408 | // Allocation from this alternative memory type succeeded. | ||
| 16409 | ✗ | if (res == VK_SUCCESS) | |
| 16410 | { | ||
| 16411 | ✗ | return res; | |
| 16412 | } | ||
| 16413 | // else: Allocation from this memory type failed. Try next one - next loop iteration. | ||
| 16414 | } | ||
| 16415 | // No other matching memory type index could be found. | ||
| 16416 | else | ||
| 16417 | { | ||
| 16418 | // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. | ||
| 16419 | ✗ | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | |
| 16420 | } | ||
| 16421 | } | ||
| 16422 | } | ||
| 16423 | } | ||
| 16424 | // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. | ||
| 16425 | else | ||
| 16426 | ✗ | return res; | |
| 16427 | } | ||
| 16428 | } | ||
| 16429 | |||
| 16430 | void VmaAllocator_T::FreeMemory( | ||
| 16431 | size_t allocationCount, | ||
| 16432 | const VmaAllocation* pAllocations) | ||
| 16433 | { | ||
| 16434 | ✗ | VMA_ASSERT(pAllocations); | |
| 16435 | |||
| 16436 | ✗ | for (size_t allocIndex = allocationCount; allocIndex--; ) | |
| 16437 | { | ||
| 16438 | ✗ | VmaAllocation allocation = pAllocations[allocIndex]; | |
| 16439 | |||
| 16440 | ✗ | if (allocation != VK_NULL_HANDLE) | |
| 16441 | { | ||
| 16442 | ✗ | if (TouchAllocation(allocation)) | |
| 16443 | { | ||
| 16444 | if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) | ||
| 16445 | { | ||
| 16446 | FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED); | ||
| 16447 | } | ||
| 16448 | |||
| 16449 | ✗ | switch (allocation->GetType()) | |
| 16450 | { | ||
| 16451 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: | |
| 16452 | { | ||
| 16453 | ✗ | VmaBlockVector* pBlockVector = VMA_NULL; | |
| 16454 | ✗ | VmaPool hPool = allocation->GetBlock()->GetParentPool(); | |
| 16455 | ✗ | if (hPool != VK_NULL_HANDLE) | |
| 16456 | { | ||
| 16457 | ✗ | pBlockVector = &hPool->m_BlockVector; | |
| 16458 | } | ||
| 16459 | else | ||
| 16460 | { | ||
| 16461 | ✗ | const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); | |
| 16462 | ✗ | pBlockVector = m_pBlockVectors[memTypeIndex]; | |
| 16463 | } | ||
| 16464 | ✗ | pBlockVector->Free(allocation); | |
| 16465 | } | ||
| 16466 | ✗ | break; | |
| 16467 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: | |
| 16468 | ✗ | FreeDedicatedMemory(allocation); | |
| 16469 | ✗ | break; | |
| 16470 | ✗ | default: | |
| 16471 | ✗ | VMA_ASSERT(0); | |
| 16472 | } | ||
| 16473 | } | ||
| 16474 | |||
| 16475 | // Do this regardless of whether the allocation is lost. Lost allocations still account to Budget.AllocationBytes. | ||
| 16476 | ✗ | m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize()); | |
| 16477 | ✗ | allocation->SetUserData(this, VMA_NULL); | |
| 16478 | ✗ | m_AllocationObjectAllocator.Free(allocation); | |
| 16479 | } | ||
| 16480 | } | ||
| 16481 | ✗ | } | |
| 16482 | |||
| 16483 | VkResult VmaAllocator_T::ResizeAllocation( | ||
| 16484 | const VmaAllocation alloc, | ||
| 16485 | VkDeviceSize newSize) | ||
| 16486 | { | ||
| 16487 | // This function is deprecated and so it does nothing. It's left for backward compatibility. | ||
| 16488 | ✗ | if (newSize == 0 || alloc->GetLastUseFrameIndex() == VMA_FRAME_INDEX_LOST) | |
| 16489 | { | ||
| 16490 | ✗ | return VK_ERROR_VALIDATION_FAILED_EXT; | |
| 16491 | } | ||
| 16492 | ✗ | if (newSize == alloc->GetSize()) | |
| 16493 | { | ||
| 16494 | ✗ | return VK_SUCCESS; | |
| 16495 | } | ||
| 16496 | ✗ | return VK_ERROR_OUT_OF_POOL_MEMORY; | |
| 16497 | } | ||
| 16498 | |||
| 16499 | void VmaAllocator_T::CalculateStats(VmaStats* pStats) | ||
| 16500 | { | ||
| 16501 | // Initialize. | ||
| 16502 | ✗ | InitStatInfo(pStats->total); | |
| 16503 | ✗ | for (size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) | |
| 16504 | ✗ | InitStatInfo(pStats->memoryType[i]); | |
| 16505 | ✗ | for (size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) | |
| 16506 | ✗ | InitStatInfo(pStats->memoryHeap[i]); | |
| 16507 | |||
| 16508 | // Process default pools. | ||
| 16509 | ✗ | for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) | |
| 16510 | { | ||
| 16511 | ✗ | VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; | |
| 16512 | ✗ | VMA_ASSERT(pBlockVector); | |
| 16513 | ✗ | pBlockVector->AddStats(pStats); | |
| 16514 | } | ||
| 16515 | |||
| 16516 | // Process custom pools. | ||
| 16517 | { | ||
| 16518 | ✗ | VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); | |
| 16519 | ✗ | for (size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) | |
| 16520 | { | ||
| 16521 | ✗ | m_Pools[poolIndex]->m_BlockVector.AddStats(pStats); | |
| 16522 | } | ||
| 16523 | ✗ | } | |
| 16524 | |||
| 16525 | // Process dedicated allocations. | ||
| 16526 | ✗ | for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) | |
| 16527 | { | ||
| 16528 | ✗ | const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); | |
| 16529 | ✗ | VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); | |
| 16530 | ✗ | AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex]; | |
| 16531 | ✗ | VMA_ASSERT(pDedicatedAllocVector); | |
| 16532 | ✗ | for (size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex) | |
| 16533 | { | ||
| 16534 | VmaStatInfo allocationStatInfo; | ||
| 16535 | ✗ | (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo); | |
| 16536 | ✗ | VmaAddStatInfo(pStats->total, allocationStatInfo); | |
| 16537 | ✗ | VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); | |
| 16538 | ✗ | VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); | |
| 16539 | } | ||
| 16540 | ✗ | } | |
| 16541 | |||
| 16542 | // Postprocess. | ||
| 16543 | ✗ | VmaPostprocessCalcStatInfo(pStats->total); | |
| 16544 | ✗ | for (size_t i = 0; i < GetMemoryTypeCount(); ++i) | |
| 16545 | ✗ | VmaPostprocessCalcStatInfo(pStats->memoryType[i]); | |
| 16546 | ✗ | for (size_t i = 0; i < GetMemoryHeapCount(); ++i) | |
| 16547 | ✗ | VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]); | |
| 16548 | ✗ | } | |
| 16549 | |||
| 16550 | void VmaAllocator_T::GetBudget(VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount) | ||
| 16551 | { | ||
| 16552 | #if VMA_MEMORY_BUDGET | ||
| 16553 | ✗ | if (m_UseExtMemoryBudget) | |
| 16554 | { | ||
| 16555 | ✗ | if (m_Budget.m_OperationsSinceBudgetFetch < 30) | |
| 16556 | { | ||
| 16557 | ✗ | VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex); | |
| 16558 | ✗ | for (uint32_t i = 0; i < heapCount; ++i, ++outBudget) | |
| 16559 | { | ||
| 16560 | ✗ | const uint32_t heapIndex = firstHeap + i; | |
| 16561 | |||
| 16562 | ✗ | outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex]; | |
| 16563 | ✗ | outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; | |
| 16564 | |||
| 16565 | ✗ | if (m_Budget.m_VulkanUsage[heapIndex] + outBudget->blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]) | |
| 16566 | { | ||
| 16567 | ✗ | outBudget->usage = m_Budget.m_VulkanUsage[heapIndex] + | |
| 16568 | ✗ | outBudget->blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; | |
| 16569 | } | ||
| 16570 | else | ||
| 16571 | { | ||
| 16572 | ✗ | outBudget->usage = 0; | |
| 16573 | } | ||
| 16574 | |||
| 16575 | // Have to take MIN with heap size because explicit HeapSizeLimit is included in it. | ||
| 16576 | ✗ | outBudget->budget = VMA_MIN( | |
| 16577 | m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size); | ||
| 16578 | } | ||
| 16579 | ✗ | } | |
| 16580 | else | ||
| 16581 | { | ||
| 16582 | ✗ | UpdateVulkanBudget(); // Outside of mutex lock | |
| 16583 | ✗ | GetBudget(outBudget, firstHeap, heapCount); // Recursion | |
| 16584 | } | ||
| 16585 | } | ||
| 16586 | else | ||
| 16587 | #endif | ||
| 16588 | { | ||
| 16589 | ✗ | for (uint32_t i = 0; i < heapCount; ++i, ++outBudget) | |
| 16590 | { | ||
| 16591 | ✗ | const uint32_t heapIndex = firstHeap + i; | |
| 16592 | |||
| 16593 | ✗ | outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex]; | |
| 16594 | ✗ | outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; | |
| 16595 | |||
| 16596 | ✗ | outBudget->usage = outBudget->blockBytes; | |
| 16597 | ✗ | outBudget->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. | |
| 16598 | } | ||
| 16599 | } | ||
| 16600 | ✗ | } | |
| 16601 | |||
| 16602 | static const uint32_t VMA_VENDOR_ID_AMD = 4098; | ||
| 16603 | |||
| 16604 | VkResult VmaAllocator_T::DefragmentationBegin( | ||
| 16605 | const VmaDefragmentationInfo2& info, | ||
| 16606 | VmaDefragmentationStats* pStats, | ||
| 16607 | VmaDefragmentationContext* pContext) | ||
| 16608 | { | ||
| 16609 | ✗ | if (info.pAllocationsChanged != VMA_NULL) | |
| 16610 | { | ||
| 16611 | ✗ | memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32)); | |
| 16612 | } | ||
| 16613 | |||
| 16614 | ✗ | *pContext = vma_new(this, VmaDefragmentationContext_T)( | |
| 16615 | ✗ | this, m_CurrentFrameIndex.load(), info.flags, pStats); | |
| 16616 | |||
| 16617 | ✗ | (*pContext)->AddPools(info.poolCount, info.pPools); | |
| 16618 | ✗ | (*pContext)->AddAllocations( | |
| 16619 | ✗ | info.allocationCount, info.pAllocations, info.pAllocationsChanged); | |
| 16620 | |||
| 16621 | ✗ | VkResult res = (*pContext)->Defragment( | |
| 16622 | ✗ | info.maxCpuBytesToMove, info.maxCpuAllocationsToMove, | |
| 16623 | ✗ | info.maxGpuBytesToMove, info.maxGpuAllocationsToMove, | |
| 16624 | ✗ | info.commandBuffer, pStats, info.flags); | |
| 16625 | |||
| 16626 | ✗ | if (res != VK_NOT_READY) | |
| 16627 | { | ||
| 16628 | ✗ | vma_delete(this, *pContext); | |
| 16629 | ✗ | *pContext = VMA_NULL; | |
| 16630 | } | ||
| 16631 | |||
| 16632 | ✗ | return res; | |
| 16633 | } | ||
| 16634 | |||
| 16635 | VkResult VmaAllocator_T::DefragmentationEnd( | ||
| 16636 | VmaDefragmentationContext context) | ||
| 16637 | { | ||
| 16638 | ✗ | vma_delete(this, context); | |
| 16639 | ✗ | return VK_SUCCESS; | |
| 16640 | } | ||
| 16641 | |||
| 16642 | VkResult VmaAllocator_T::DefragmentationPassBegin( | ||
| 16643 | VmaDefragmentationPassInfo* pInfo, | ||
| 16644 | VmaDefragmentationContext context) | ||
| 16645 | { | ||
| 16646 | ✗ | return context->DefragmentPassBegin(pInfo); | |
| 16647 | } | ||
| 16648 | VkResult VmaAllocator_T::DefragmentationPassEnd( | ||
| 16649 | VmaDefragmentationContext context) | ||
| 16650 | { | ||
| 16651 | ✗ | return context->DefragmentPassEnd(); | |
| 16652 | |||
| 16653 | } | ||
| 16654 | |||
| 16655 | void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo) | ||
| 16656 | { | ||
| 16657 | ✗ | if (hAllocation->CanBecomeLost()) | |
| 16658 | { | ||
| 16659 | /* | ||
| 16660 | Warning: This is a carefully designed algorithm. | ||
| 16661 | Do not modify unless you really know what you're doing :) | ||
| 16662 | */ | ||
| 16663 | ✗ | const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); | |
| 16664 | ✗ | uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); | |
| 16665 | for (;;) | ||
| 16666 | { | ||
| 16667 | ✗ | if (localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) | |
| 16668 | { | ||
| 16669 | ✗ | pAllocationInfo->memoryType = UINT32_MAX; | |
| 16670 | ✗ | pAllocationInfo->deviceMemory = VK_NULL_HANDLE; | |
| 16671 | ✗ | pAllocationInfo->offset = 0; | |
| 16672 | ✗ | pAllocationInfo->size = hAllocation->GetSize(); | |
| 16673 | ✗ | pAllocationInfo->pMappedData = VMA_NULL; | |
| 16674 | ✗ | pAllocationInfo->pUserData = hAllocation->GetUserData(); | |
| 16675 | ✗ | return; | |
| 16676 | } | ||
| 16677 | ✗ | else if (localLastUseFrameIndex == localCurrFrameIndex) | |
| 16678 | { | ||
| 16679 | ✗ | pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); | |
| 16680 | ✗ | pAllocationInfo->deviceMemory = hAllocation->GetMemory(); | |
| 16681 | ✗ | pAllocationInfo->offset = hAllocation->GetOffset(); | |
| 16682 | ✗ | pAllocationInfo->size = hAllocation->GetSize(); | |
| 16683 | ✗ | pAllocationInfo->pMappedData = VMA_NULL; | |
| 16684 | ✗ | pAllocationInfo->pUserData = hAllocation->GetUserData(); | |
| 16685 | ✗ | return; | |
| 16686 | } | ||
| 16687 | else // Last use time earlier than current time. | ||
| 16688 | { | ||
| 16689 | ✗ | if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) | |
| 16690 | { | ||
| 16691 | ✗ | localLastUseFrameIndex = localCurrFrameIndex; | |
| 16692 | } | ||
| 16693 | } | ||
| 16694 | } | ||
| 16695 | } | ||
| 16696 | else | ||
| 16697 | { | ||
| 16698 | #if VMA_STATS_STRING_ENABLED | ||
| 16699 | ✗ | uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); | |
| 16700 | ✗ | uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); | |
| 16701 | for (;;) | ||
| 16702 | { | ||
| 16703 | ✗ | VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); | |
| 16704 | ✗ | if (localLastUseFrameIndex == localCurrFrameIndex) | |
| 16705 | { | ||
| 16706 | ✗ | break; | |
| 16707 | } | ||
| 16708 | else // Last use time earlier than current time. | ||
| 16709 | { | ||
| 16710 | ✗ | if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) | |
| 16711 | { | ||
| 16712 | ✗ | localLastUseFrameIndex = localCurrFrameIndex; | |
| 16713 | } | ||
| 16714 | } | ||
| 16715 | } | ||
| 16716 | #endif | ||
| 16717 | |||
| 16718 | ✗ | pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); | |
| 16719 | ✗ | pAllocationInfo->deviceMemory = hAllocation->GetMemory(); | |
| 16720 | ✗ | pAllocationInfo->offset = hAllocation->GetOffset(); | |
| 16721 | ✗ | pAllocationInfo->size = hAllocation->GetSize(); | |
| 16722 | ✗ | pAllocationInfo->pMappedData = hAllocation->GetMappedData(); | |
| 16723 | ✗ | pAllocationInfo->pUserData = hAllocation->GetUserData(); | |
| 16724 | } | ||
| 16725 | } | ||
| 16726 | |||
| 16727 | bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation) | ||
| 16728 | { | ||
| 16729 | // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo. | ||
| 16730 | ✗ | if (hAllocation->CanBecomeLost()) | |
| 16731 | { | ||
| 16732 | ✗ | uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); | |
| 16733 | ✗ | uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); | |
| 16734 | for (;;) | ||
| 16735 | { | ||
| 16736 | ✗ | if (localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) | |
| 16737 | { | ||
| 16738 | ✗ | return false; | |
| 16739 | } | ||
| 16740 | ✗ | else if (localLastUseFrameIndex == localCurrFrameIndex) | |
| 16741 | { | ||
| 16742 | ✗ | return true; | |
| 16743 | } | ||
| 16744 | else // Last use time earlier than current time. | ||
| 16745 | { | ||
| 16746 | ✗ | if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) | |
| 16747 | { | ||
| 16748 | ✗ | localLastUseFrameIndex = localCurrFrameIndex; | |
| 16749 | } | ||
| 16750 | } | ||
| 16751 | } | ||
| 16752 | } | ||
| 16753 | else | ||
| 16754 | { | ||
| 16755 | #if VMA_STATS_STRING_ENABLED | ||
| 16756 | ✗ | uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); | |
| 16757 | ✗ | uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); | |
| 16758 | for (;;) | ||
| 16759 | { | ||
| 16760 | ✗ | VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); | |
| 16761 | ✗ | if (localLastUseFrameIndex == localCurrFrameIndex) | |
| 16762 | { | ||
| 16763 | ✗ | break; | |
| 16764 | } | ||
| 16765 | else // Last use time earlier than current time. | ||
| 16766 | { | ||
| 16767 | ✗ | if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) | |
| 16768 | { | ||
| 16769 | ✗ | localLastUseFrameIndex = localCurrFrameIndex; | |
| 16770 | } | ||
| 16771 | } | ||
| 16772 | } | ||
| 16773 | #endif | ||
| 16774 | |||
| 16775 | ✗ | return true; | |
| 16776 | } | ||
| 16777 | } | ||
| 16778 | |||
| 16779 | VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool) | ||
| 16780 | { | ||
| 16781 | VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags); | ||
| 16782 | |||
| 16783 | ✗ | VmaPoolCreateInfo newCreateInfo = *pCreateInfo; | |
| 16784 | |||
| 16785 | ✗ | if (newCreateInfo.maxBlockCount == 0) | |
| 16786 | { | ||
| 16787 | ✗ | newCreateInfo.maxBlockCount = SIZE_MAX; | |
| 16788 | } | ||
| 16789 | ✗ | if (newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) | |
| 16790 | { | ||
| 16791 | ✗ | return VK_ERROR_INITIALIZATION_FAILED; | |
| 16792 | } | ||
| 16793 | // Memory type index out of range or forbidden. | ||
| 16794 | ✗ | if (pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() || | |
| 16795 | ✗ | ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0) | |
| 16796 | { | ||
| 16797 | ✗ | return VK_ERROR_FEATURE_NOT_PRESENT; | |
| 16798 | } | ||
| 16799 | |||
| 16800 | ✗ | const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); | |
| 16801 | |||
| 16802 | ✗ | *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); | |
| 16803 | |||
| 16804 | ✗ | VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); | |
| 16805 | ✗ | if (res != VK_SUCCESS) | |
| 16806 | { | ||
| 16807 | ✗ | vma_delete(this, *pPool); | |
| 16808 | ✗ | *pPool = VMA_NULL; | |
| 16809 | ✗ | return res; | |
| 16810 | } | ||
| 16811 | |||
| 16812 | // Add to m_Pools. | ||
| 16813 | { | ||
| 16814 | ✗ | VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); | |
| 16815 | ✗ | (*pPool)->SetId(m_NextPoolId++); | |
| 16816 | ✗ | VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool); | |
| 16817 | ✗ | } | |
| 16818 | |||
| 16819 | ✗ | return VK_SUCCESS; | |
| 16820 | } | ||
| 16821 | |||
| 16822 | void VmaAllocator_T::DestroyPool(VmaPool pool) | ||
| 16823 | { | ||
| 16824 | // Remove from m_Pools. | ||
| 16825 | { | ||
| 16826 | ✗ | VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); | |
| 16827 | ✗ | bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool); | |
| 16828 | ✗ | VMA_ASSERT(success && "Pool not found in Allocator."); | |
| 16829 | ✗ | } | |
| 16830 | |||
| 16831 | ✗ | vma_delete(this, pool); | |
| 16832 | ✗ | } | |
| 16833 | |||
| 16834 | void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats) | ||
| 16835 | { | ||
| 16836 | ✗ | pool->m_BlockVector.GetPoolStats(pPoolStats); | |
| 16837 | ✗ | } | |
| 16838 | |||
| 16839 | void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) | ||
| 16840 | { | ||
| 16841 | ✗ | m_CurrentFrameIndex.store(frameIndex); | |
| 16842 | |||
| 16843 | #if VMA_MEMORY_BUDGET | ||
| 16844 | ✗ | if (m_UseExtMemoryBudget) | |
| 16845 | { | ||
| 16846 | ✗ | UpdateVulkanBudget(); | |
| 16847 | } | ||
| 16848 | #endif // #if VMA_MEMORY_BUDGET | ||
| 16849 | ✗ | } | |
| 16850 | |||
| 16851 | void VmaAllocator_T::MakePoolAllocationsLost( | ||
| 16852 | VmaPool hPool, | ||
| 16853 | size_t* pLostAllocationCount) | ||
| 16854 | { | ||
| 16855 | ✗ | hPool->m_BlockVector.MakePoolAllocationsLost( | |
| 16856 | m_CurrentFrameIndex.load(), | ||
| 16857 | pLostAllocationCount); | ||
| 16858 | ✗ | } | |
| 16859 | |||
| 16860 | VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) | ||
| 16861 | { | ||
| 16862 | ✗ | return hPool->m_BlockVector.CheckCorruption(); | |
| 16863 | } | ||
| 16864 | |||
| 16865 | VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) | ||
| 16866 | { | ||
| 16867 | ✗ | VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT; | |
| 16868 | |||
| 16869 | // Process default pools. | ||
| 16870 | ✗ | for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) | |
| 16871 | { | ||
| 16872 | ✗ | if (((1u << memTypeIndex) & memoryTypeBits) != 0) | |
| 16873 | { | ||
| 16874 | ✗ | VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; | |
| 16875 | ✗ | VMA_ASSERT(pBlockVector); | |
| 16876 | ✗ | VkResult localRes = pBlockVector->CheckCorruption(); | |
| 16877 | ✗ | switch (localRes) | |
| 16878 | { | ||
| 16879 | ✗ | case VK_ERROR_FEATURE_NOT_PRESENT: | |
| 16880 | ✗ | break; | |
| 16881 | ✗ | case VK_SUCCESS: | |
| 16882 | ✗ | finalRes = VK_SUCCESS; | |
| 16883 | ✗ | break; | |
| 16884 | ✗ | default: | |
| 16885 | ✗ | return localRes; | |
| 16886 | } | ||
| 16887 | } | ||
| 16888 | } | ||
| 16889 | |||
| 16890 | // Process custom pools. | ||
| 16891 | { | ||
| 16892 | ✗ | VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); | |
| 16893 | ✗ | for (size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) | |
| 16894 | { | ||
| 16895 | ✗ | if (((1u << m_Pools[poolIndex]->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) | |
| 16896 | { | ||
| 16897 | ✗ | VkResult localRes = m_Pools[poolIndex]->m_BlockVector.CheckCorruption(); | |
| 16898 | ✗ | switch (localRes) | |
| 16899 | { | ||
| 16900 | ✗ | case VK_ERROR_FEATURE_NOT_PRESENT: | |
| 16901 | ✗ | break; | |
| 16902 | ✗ | case VK_SUCCESS: | |
| 16903 | ✗ | finalRes = VK_SUCCESS; | |
| 16904 | ✗ | break; | |
| 16905 | ✗ | default: | |
| 16906 | ✗ | return localRes; | |
| 16907 | } | ||
| 16908 | } | ||
| 16909 | } | ||
| 16910 | ✗ | } | |
| 16911 | |||
| 16912 | ✗ | return finalRes; | |
| 16913 | } | ||
| 16914 | |||
| 16915 | void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation) | ||
| 16916 | { | ||
| 16917 | ✗ | *pAllocation = m_AllocationObjectAllocator.Allocate(VMA_FRAME_INDEX_LOST, false); | |
| 16918 | ✗ | (*pAllocation)->InitLost(); | |
| 16919 | ✗ | } | |
| 16920 | |||
| 16921 | VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory) | ||
| 16922 | { | ||
| 16923 | ✗ | const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex); | |
| 16924 | |||
| 16925 | // HeapSizeLimit is in effect for this heap. | ||
| 16926 | ✗ | if ((m_HeapSizeLimitMask & (1u << heapIndex)) != 0) | |
| 16927 | { | ||
| 16928 | ✗ | const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; | |
| 16929 | ✗ | VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex]; | |
| 16930 | for (;;) | ||
| 16931 | { | ||
| 16932 | ✗ | const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize; | |
| 16933 | ✗ | if (blockBytesAfterAllocation > heapSize) | |
| 16934 | { | ||
| 16935 | ✗ | return VK_ERROR_OUT_OF_DEVICE_MEMORY; | |
| 16936 | } | ||
| 16937 | ✗ | if (m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation)) | |
| 16938 | { | ||
| 16939 | ✗ | break; | |
| 16940 | } | ||
| 16941 | ✗ | } | |
| 16942 | } | ||
| 16943 | else | ||
| 16944 | { | ||
| 16945 | ✗ | m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize; | |
| 16946 | } | ||
| 16947 | |||
| 16948 | // VULKAN CALL vkAllocateMemory. | ||
| 16949 | ✗ | VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); | |
| 16950 | |||
| 16951 | ✗ | if (res == VK_SUCCESS) | |
| 16952 | { | ||
| 16953 | #if VMA_MEMORY_BUDGET | ||
| 16954 | ✗ | ++m_Budget.m_OperationsSinceBudgetFetch; | |
| 16955 | #endif | ||
| 16956 | |||
| 16957 | // Informative callback. | ||
| 16958 | ✗ | if (m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) | |
| 16959 | { | ||
| 16960 | ✗ | (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData); | |
| 16961 | } | ||
| 16962 | } | ||
| 16963 | else | ||
| 16964 | { | ||
| 16965 | ✗ | m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize; | |
| 16966 | } | ||
| 16967 | |||
| 16968 | ✗ | return res; | |
| 16969 | } | ||
| 16970 | |||
| 16971 | void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) | ||
| 16972 | { | ||
| 16973 | // Informative callback. | ||
| 16974 | ✗ | if (m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) | |
| 16975 | { | ||
| 16976 | ✗ | (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData); | |
| 16977 | } | ||
| 16978 | |||
| 16979 | // VULKAN CALL vkFreeMemory. | ||
| 16980 | ✗ | (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks()); | |
| 16981 | |||
| 16982 | ✗ | m_Budget.m_BlockBytes[MemoryTypeIndexToHeapIndex(memoryType)] -= size; | |
| 16983 | ✗ | } | |
| 16984 | |||
| 16985 | VkResult VmaAllocator_T::BindVulkanBuffer( | ||
| 16986 | VkDeviceMemory memory, | ||
| 16987 | VkDeviceSize memoryOffset, | ||
| 16988 | VkBuffer buffer, | ||
| 16989 | const void* pNext) | ||
| 16990 | { | ||
| 16991 | ✗ | if (pNext != VMA_NULL) | |
| 16992 | { | ||
| 16993 | #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 | ||
| 16994 | ✗ | if ((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && | |
| 16995 | ✗ | m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL) | |
| 16996 | { | ||
| 16997 | ✗ | VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR }; | |
| 16998 | ✗ | bindBufferMemoryInfo.pNext = pNext; | |
| 16999 | ✗ | bindBufferMemoryInfo.buffer = buffer; | |
| 17000 | ✗ | bindBufferMemoryInfo.memory = memory; | |
| 17001 | ✗ | bindBufferMemoryInfo.memoryOffset = memoryOffset; | |
| 17002 | ✗ | return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); | |
| 17003 | } | ||
| 17004 | else | ||
| 17005 | #endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 | ||
| 17006 | { | ||
| 17007 | ✗ | return VK_ERROR_EXTENSION_NOT_PRESENT; | |
| 17008 | } | ||
| 17009 | } | ||
| 17010 | else | ||
| 17011 | { | ||
| 17012 | ✗ | return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset); | |
| 17013 | } | ||
| 17014 | } | ||
| 17015 | |||
| 17016 | VkResult VmaAllocator_T::BindVulkanImage( | ||
| 17017 | VkDeviceMemory memory, | ||
| 17018 | VkDeviceSize memoryOffset, | ||
| 17019 | VkImage image, | ||
| 17020 | const void* pNext) | ||
| 17021 | { | ||
| 17022 | ✗ | if (pNext != VMA_NULL) | |
| 17023 | { | ||
| 17024 | #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 | ||
| 17025 | ✗ | if ((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && | |
| 17026 | ✗ | m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL) | |
| 17027 | { | ||
| 17028 | ✗ | VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR }; | |
| 17029 | ✗ | bindBufferMemoryInfo.pNext = pNext; | |
| 17030 | ✗ | bindBufferMemoryInfo.image = image; | |
| 17031 | ✗ | bindBufferMemoryInfo.memory = memory; | |
| 17032 | ✗ | bindBufferMemoryInfo.memoryOffset = memoryOffset; | |
| 17033 | ✗ | return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); | |
| 17034 | } | ||
| 17035 | else | ||
| 17036 | #endif // #if VMA_BIND_MEMORY2 | ||
| 17037 | { | ||
| 17038 | ✗ | return VK_ERROR_EXTENSION_NOT_PRESENT; | |
| 17039 | } | ||
| 17040 | } | ||
| 17041 | else | ||
| 17042 | { | ||
| 17043 | ✗ | return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset); | |
| 17044 | } | ||
| 17045 | } | ||
| 17046 | |||
| 17047 | VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData) | ||
| 17048 | { | ||
| 17049 | ✗ | if (hAllocation->CanBecomeLost()) | |
| 17050 | { | ||
| 17051 | ✗ | return VK_ERROR_MEMORY_MAP_FAILED; | |
| 17052 | } | ||
| 17053 | |||
| 17054 | ✗ | switch (hAllocation->GetType()) | |
| 17055 | { | ||
| 17056 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: | |
| 17057 | { | ||
| 17058 | ✗ | VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); | |
| 17059 | ✗ | char* pBytes = VMA_NULL; | |
| 17060 | ✗ | VkResult res = pBlock->Map(this, 1, (void**)&pBytes); | |
| 17061 | ✗ | if (res == VK_SUCCESS) | |
| 17062 | { | ||
| 17063 | ✗ | *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset(); | |
| 17064 | ✗ | hAllocation->BlockAllocMap(); | |
| 17065 | } | ||
| 17066 | ✗ | return res; | |
| 17067 | } | ||
| 17068 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: | |
| 17069 | ✗ | return hAllocation->DedicatedAllocMap(this, ppData); | |
| 17070 | ✗ | default: | |
| 17071 | ✗ | VMA_ASSERT(0); | |
| 17072 | return VK_ERROR_MEMORY_MAP_FAILED; | ||
| 17073 | } | ||
| 17074 | } | ||
| 17075 | |||
| 17076 | void VmaAllocator_T::Unmap(VmaAllocation hAllocation) | ||
| 17077 | { | ||
| 17078 | ✗ | switch (hAllocation->GetType()) | |
| 17079 | { | ||
| 17080 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: | |
| 17081 | { | ||
| 17082 | ✗ | VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); | |
| 17083 | ✗ | hAllocation->BlockAllocUnmap(); | |
| 17084 | ✗ | pBlock->Unmap(this, 1); | |
| 17085 | } | ||
| 17086 | ✗ | break; | |
| 17087 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: | |
| 17088 | ✗ | hAllocation->DedicatedAllocUnmap(this); | |
| 17089 | ✗ | break; | |
| 17090 | ✗ | default: | |
| 17091 | ✗ | VMA_ASSERT(0); | |
| 17092 | } | ||
| 17093 | ✗ | } | |
| 17094 | |||
| 17095 | VkResult VmaAllocator_T::BindBufferMemory( | ||
| 17096 | VmaAllocation hAllocation, | ||
| 17097 | VkDeviceSize allocationLocalOffset, | ||
| 17098 | VkBuffer hBuffer, | ||
| 17099 | const void* pNext) | ||
| 17100 | { | ||
| 17101 | ✗ | VkResult res = VK_SUCCESS; | |
| 17102 | ✗ | switch (hAllocation->GetType()) | |
| 17103 | { | ||
| 17104 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: | |
| 17105 | ✗ | res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext); | |
| 17106 | ✗ | break; | |
| 17107 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: | |
| 17108 | { | ||
| 17109 | ✗ | VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); | |
| 17110 | ✗ | VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?"); | |
| 17111 | ✗ | res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext); | |
| 17112 | ✗ | break; | |
| 17113 | } | ||
| 17114 | ✗ | default: | |
| 17115 | ✗ | VMA_ASSERT(0); | |
| 17116 | } | ||
| 17117 | ✗ | return res; | |
| 17118 | } | ||
| 17119 | |||
| 17120 | VkResult VmaAllocator_T::BindImageMemory( | ||
| 17121 | VmaAllocation hAllocation, | ||
| 17122 | VkDeviceSize allocationLocalOffset, | ||
| 17123 | VkImage hImage, | ||
| 17124 | const void* pNext) | ||
| 17125 | { | ||
| 17126 | ✗ | VkResult res = VK_SUCCESS; | |
| 17127 | ✗ | switch (hAllocation->GetType()) | |
| 17128 | { | ||
| 17129 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: | |
| 17130 | ✗ | res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext); | |
| 17131 | ✗ | break; | |
| 17132 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: | |
| 17133 | { | ||
| 17134 | ✗ | VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); | |
| 17135 | ✗ | VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?"); | |
| 17136 | ✗ | res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext); | |
| 17137 | ✗ | break; | |
| 17138 | } | ||
| 17139 | ✗ | default: | |
| 17140 | ✗ | VMA_ASSERT(0); | |
| 17141 | } | ||
| 17142 | ✗ | return res; | |
| 17143 | } | ||
| 17144 | |||
| 17145 | VkResult VmaAllocator_T::FlushOrInvalidateAllocation( | ||
| 17146 | VmaAllocation hAllocation, | ||
| 17147 | VkDeviceSize offset, VkDeviceSize size, | ||
| 17148 | VMA_CACHE_OPERATION op) | ||
| 17149 | { | ||
| 17150 | ✗ | VkResult res = VK_SUCCESS; | |
| 17151 | |||
| 17152 | ✗ | VkMappedMemoryRange memRange = {}; | |
| 17153 | ✗ | if (GetFlushOrInvalidateRange(hAllocation, offset, size, memRange)) | |
| 17154 | { | ||
| 17155 | ✗ | switch (op) | |
| 17156 | { | ||
| 17157 | ✗ | case VMA_CACHE_FLUSH: | |
| 17158 | ✗ | res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange); | |
| 17159 | ✗ | break; | |
| 17160 | ✗ | case VMA_CACHE_INVALIDATE: | |
| 17161 | ✗ | res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange); | |
| 17162 | ✗ | break; | |
| 17163 | ✗ | default: | |
| 17164 | ✗ | VMA_ASSERT(0); | |
| 17165 | } | ||
| 17166 | } | ||
| 17167 | // else: Just ignore this call. | ||
| 17168 | ✗ | return res; | |
| 17169 | } | ||
| 17170 | |||
| 17171 | VkResult VmaAllocator_T::FlushOrInvalidateAllocations( | ||
| 17172 | uint32_t allocationCount, | ||
| 17173 | const VmaAllocation* allocations, | ||
| 17174 | const VkDeviceSize* offsets, const VkDeviceSize* sizes, | ||
| 17175 | VMA_CACHE_OPERATION op) | ||
| 17176 | { | ||
| 17177 | typedef VmaStlAllocator<VkMappedMemoryRange> RangeAllocator; | ||
| 17178 | typedef VmaSmallVector<VkMappedMemoryRange, RangeAllocator, 16> RangeVector; | ||
| 17179 | ✗ | RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks())); | |
| 17180 | |||
| 17181 | ✗ | for (uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) | |
| 17182 | { | ||
| 17183 | ✗ | const VmaAllocation alloc = allocations[allocIndex]; | |
| 17184 | ✗ | const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0; | |
| 17185 | ✗ | const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE; | |
| 17186 | VkMappedMemoryRange newRange; | ||
| 17187 | ✗ | if (GetFlushOrInvalidateRange(alloc, offset, size, newRange)) | |
| 17188 | { | ||
| 17189 | ✗ | ranges.push_back(newRange); | |
| 17190 | } | ||
| 17191 | } | ||
| 17192 | |||
| 17193 | ✗ | VkResult res = VK_SUCCESS; | |
| 17194 | ✗ | if (!ranges.empty()) | |
| 17195 | { | ||
| 17196 | ✗ | switch (op) | |
| 17197 | { | ||
| 17198 | ✗ | case VMA_CACHE_FLUSH: | |
| 17199 | ✗ | res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); | |
| 17200 | ✗ | break; | |
| 17201 | ✗ | case VMA_CACHE_INVALIDATE: | |
| 17202 | ✗ | res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); | |
| 17203 | ✗ | break; | |
| 17204 | ✗ | default: | |
| 17205 | ✗ | VMA_ASSERT(0); | |
| 17206 | } | ||
| 17207 | } | ||
| 17208 | // else: Just ignore this call. | ||
| 17209 | ✗ | return res; | |
| 17210 | ✗ | } | |
| 17211 | |||
| 17212 | void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation) | ||
| 17213 | { | ||
| 17214 | ✗ | VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); | |
| 17215 | |||
| 17216 | ✗ | const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); | |
| 17217 | { | ||
| 17218 | ✗ | VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); | |
| 17219 | ✗ | AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex]; | |
| 17220 | ✗ | VMA_ASSERT(pDedicatedAllocations); | |
| 17221 | ✗ | bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation); | |
| 17222 | ✗ | VMA_ASSERT(success); | |
| 17223 | ✗ | } | |
| 17224 | |||
| 17225 | ✗ | VkDeviceMemory hMemory = allocation->GetMemory(); | |
| 17226 | |||
| 17227 | /* | ||
| 17228 | There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory | ||
| 17229 | before vkFreeMemory. | ||
| 17230 | |||
| 17231 | if(allocation->GetMappedData() != VMA_NULL) | ||
| 17232 | { | ||
| 17233 | (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); | ||
| 17234 | } | ||
| 17235 | */ | ||
| 17236 | |||
| 17237 | ✗ | FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory); | |
| 17238 | |||
| 17239 | VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex); | ||
| 17240 | ✗ | } | |
| 17241 | |||
| 17242 | uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const | ||
| 17243 | { | ||
| 17244 | VkBufferCreateInfo dummyBufCreateInfo; | ||
| 17245 | ✗ | VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo); | |
| 17246 | |||
| 17247 | ✗ | uint32_t memoryTypeBits = 0; | |
| 17248 | |||
| 17249 | // Create buffer. | ||
| 17250 | ✗ | VkBuffer buf = VK_NULL_HANDLE; | |
| 17251 | ✗ | VkResult res = (*GetVulkanFunctions().vkCreateBuffer)( | |
| 17252 | ✗ | m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf); | |
| 17253 | ✗ | if (res == VK_SUCCESS) | |
| 17254 | { | ||
| 17255 | // Query for supported memory types. | ||
| 17256 | VkMemoryRequirements memReq; | ||
| 17257 | ✗ | (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq); | |
| 17258 | ✗ | memoryTypeBits = memReq.memoryTypeBits; | |
| 17259 | |||
| 17260 | // Destroy buffer. | ||
| 17261 | ✗ | (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks()); | |
| 17262 | } | ||
| 17263 | |||
| 17264 | ✗ | return memoryTypeBits; | |
| 17265 | } | ||
| 17266 | |||
| 17267 | uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const | ||
| 17268 | { | ||
| 17269 | // Make sure memory information is already fetched. | ||
| 17270 | ✗ | VMA_ASSERT(GetMemoryTypeCount() > 0); | |
| 17271 | |||
| 17272 | ✗ | uint32_t memoryTypeBits = UINT32_MAX; | |
| 17273 | |||
| 17274 | ✗ | if (!m_UseAmdDeviceCoherentMemory) | |
| 17275 | { | ||
| 17276 | // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD. | ||
| 17277 | ✗ | for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) | |
| 17278 | { | ||
| 17279 | ✗ | if ((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0) | |
| 17280 | { | ||
| 17281 | ✗ | memoryTypeBits &= ~(1u << memTypeIndex); | |
| 17282 | } | ||
| 17283 | } | ||
| 17284 | } | ||
| 17285 | |||
| 17286 | ✗ | return memoryTypeBits; | |
| 17287 | } | ||
| 17288 | |||
| 17289 | bool VmaAllocator_T::GetFlushOrInvalidateRange( | ||
| 17290 | VmaAllocation allocation, | ||
| 17291 | VkDeviceSize offset, VkDeviceSize size, | ||
| 17292 | VkMappedMemoryRange& outRange) const | ||
| 17293 | { | ||
| 17294 | ✗ | const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); | |
| 17295 | ✗ | if (size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) | |
| 17296 | { | ||
| 17297 | ✗ | const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; | |
| 17298 | ✗ | const VkDeviceSize allocationSize = allocation->GetSize(); | |
| 17299 | ✗ | VMA_ASSERT(offset <= allocationSize); | |
| 17300 | |||
| 17301 | ✗ | outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; | |
| 17302 | ✗ | outRange.pNext = VMA_NULL; | |
| 17303 | ✗ | outRange.memory = allocation->GetMemory(); | |
| 17304 | |||
| 17305 | ✗ | switch (allocation->GetType()) | |
| 17306 | { | ||
| 17307 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: | |
| 17308 | ✗ | outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); | |
| 17309 | ✗ | if (size == VK_WHOLE_SIZE) | |
| 17310 | { | ||
| 17311 | ✗ | outRange.size = allocationSize - outRange.offset; | |
| 17312 | } | ||
| 17313 | else | ||
| 17314 | { | ||
| 17315 | ✗ | VMA_ASSERT(offset + size <= allocationSize); | |
| 17316 | ✗ | outRange.size = VMA_MIN( | |
| 17317 | VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize), | ||
| 17318 | allocationSize - outRange.offset); | ||
| 17319 | } | ||
| 17320 | ✗ | break; | |
| 17321 | ✗ | case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: | |
| 17322 | { | ||
| 17323 | // 1. Still within this allocation. | ||
| 17324 | ✗ | outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); | |
| 17325 | ✗ | if (size == VK_WHOLE_SIZE) | |
| 17326 | { | ||
| 17327 | ✗ | size = allocationSize - offset; | |
| 17328 | } | ||
| 17329 | else | ||
| 17330 | { | ||
| 17331 | ✗ | VMA_ASSERT(offset + size <= allocationSize); | |
| 17332 | } | ||
| 17333 | ✗ | outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize); | |
| 17334 | |||
| 17335 | // 2. Adjust to whole block. | ||
| 17336 | ✗ | const VkDeviceSize allocationOffset = allocation->GetOffset(); | |
| 17337 | ✗ | VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0); | |
| 17338 | ✗ | const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize(); | |
| 17339 | ✗ | outRange.offset += allocationOffset; | |
| 17340 | ✗ | outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset); | |
| 17341 | |||
| 17342 | ✗ | break; | |
| 17343 | } | ||
| 17344 | ✗ | default: | |
| 17345 | ✗ | VMA_ASSERT(0); | |
| 17346 | } | ||
| 17347 | ✗ | return true; | |
| 17348 | } | ||
| 17349 | ✗ | return false; | |
| 17350 | } | ||
| 17351 | |||
| 17352 | #if VMA_MEMORY_BUDGET | ||
| 17353 | |||
| 17354 | void VmaAllocator_T::UpdateVulkanBudget() | ||
| 17355 | { | ||
| 17356 | ✗ | VMA_ASSERT(m_UseExtMemoryBudget); | |
| 17357 | |||
| 17358 | ✗ | VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR }; | |
| 17359 | |||
| 17360 | ✗ | VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT }; | |
| 17361 | ✗ | VmaPnextChainPushFront(&memProps, &budgetProps); | |
| 17362 | |||
| 17363 | ✗ | GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps); | |
| 17364 | |||
| 17365 | { | ||
| 17366 | ✗ | VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex); | |
| 17367 | |||
| 17368 | ✗ | for (uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) | |
| 17369 | { | ||
| 17370 | ✗ | m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex]; | |
| 17371 | ✗ | m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex]; | |
| 17372 | ✗ | m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load(); | |
| 17373 | |||
| 17374 | // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size. | ||
| 17375 | ✗ | if (m_Budget.m_VulkanBudget[heapIndex] == 0) | |
| 17376 | { | ||
| 17377 | ✗ | m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. | |
| 17378 | } | ||
| 17379 | ✗ | else if (m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size) | |
| 17380 | { | ||
| 17381 | ✗ | m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size; | |
| 17382 | } | ||
| 17383 | ✗ | if (m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0) | |
| 17384 | { | ||
| 17385 | ✗ | m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; | |
| 17386 | } | ||
| 17387 | } | ||
| 17388 | ✗ | m_Budget.m_OperationsSinceBudgetFetch = 0; | |
| 17389 | ✗ | } | |
| 17390 | ✗ | } | |
| 17391 | |||
| 17392 | #endif // #if VMA_MEMORY_BUDGET | ||
| 17393 | |||
| 17394 | void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) | ||
| 17395 | { | ||
| 17396 | if (VMA_DEBUG_INITIALIZE_ALLOCATIONS && | ||
| 17397 | !hAllocation->CanBecomeLost() && | ||
| 17398 | (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) | ||
| 17399 | { | ||
| 17400 | void* pData = VMA_NULL; | ||
| 17401 | VkResult res = Map(hAllocation, &pData); | ||
| 17402 | if (res == VK_SUCCESS) | ||
| 17403 | { | ||
| 17404 | memset(pData, (int)pattern, (size_t)hAllocation->GetSize()); | ||
| 17405 | FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH); | ||
| 17406 | Unmap(hAllocation); | ||
| 17407 | } | ||
| 17408 | else | ||
| 17409 | { | ||
| 17410 | VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation."); | ||
| 17411 | } | ||
| 17412 | } | ||
| 17413 | ✗ | } | |
| 17414 | |||
| 17415 | uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits() | ||
| 17416 | { | ||
| 17417 | ✗ | uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load(); | |
| 17418 | ✗ | if (memoryTypeBits == UINT32_MAX) | |
| 17419 | { | ||
| 17420 | ✗ | memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits(); | |
| 17421 | ✗ | m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits); | |
| 17422 | } | ||
| 17423 | ✗ | return memoryTypeBits; | |
| 17424 | } | ||
| 17425 | |||
| 17426 | #if VMA_STATS_STRING_ENABLED | ||
| 17427 | |||
| 17428 | void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) | ||
| 17429 | { | ||
| 17430 | ✗ | bool dedicatedAllocationsStarted = false; | |
| 17431 | ✗ | for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) | |
| 17432 | { | ||
| 17433 | ✗ | VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); | |
| 17434 | ✗ | AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex]; | |
| 17435 | ✗ | VMA_ASSERT(pDedicatedAllocVector); | |
| 17436 | ✗ | if (pDedicatedAllocVector->empty() == false) | |
| 17437 | { | ||
| 17438 | ✗ | if (dedicatedAllocationsStarted == false) | |
| 17439 | { | ||
| 17440 | ✗ | dedicatedAllocationsStarted = true; | |
| 17441 | ✗ | json.WriteString("DedicatedAllocations"); | |
| 17442 | ✗ | json.BeginObject(); | |
| 17443 | } | ||
| 17444 | |||
| 17445 | ✗ | json.BeginString("Type "); | |
| 17446 | ✗ | json.ContinueString(memTypeIndex); | |
| 17447 | ✗ | json.EndString(); | |
| 17448 | |||
| 17449 | ✗ | json.BeginArray(); | |
| 17450 | |||
| 17451 | ✗ | for (size_t i = 0; i < pDedicatedAllocVector->size(); ++i) | |
| 17452 | { | ||
| 17453 | ✗ | json.BeginObject(true); | |
| 17454 | ✗ | const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i]; | |
| 17455 | ✗ | hAlloc->PrintParameters(json); | |
| 17456 | ✗ | json.EndObject(); | |
| 17457 | } | ||
| 17458 | |||
| 17459 | ✗ | json.EndArray(); | |
| 17460 | } | ||
| 17461 | ✗ | } | |
| 17462 | ✗ | if (dedicatedAllocationsStarted) | |
| 17463 | { | ||
| 17464 | ✗ | json.EndObject(); | |
| 17465 | } | ||
| 17466 | |||
| 17467 | { | ||
| 17468 | ✗ | bool allocationsStarted = false; | |
| 17469 | ✗ | for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) | |
| 17470 | { | ||
| 17471 | ✗ | if (m_pBlockVectors[memTypeIndex]->IsEmpty() == false) | |
| 17472 | { | ||
| 17473 | ✗ | if (allocationsStarted == false) | |
| 17474 | { | ||
| 17475 | ✗ | allocationsStarted = true; | |
| 17476 | ✗ | json.WriteString("DefaultPools"); | |
| 17477 | ✗ | json.BeginObject(); | |
| 17478 | } | ||
| 17479 | |||
| 17480 | ✗ | json.BeginString("Type "); | |
| 17481 | ✗ | json.ContinueString(memTypeIndex); | |
| 17482 | ✗ | json.EndString(); | |
| 17483 | |||
| 17484 | ✗ | m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json); | |
| 17485 | } | ||
| 17486 | } | ||
| 17487 | ✗ | if (allocationsStarted) | |
| 17488 | { | ||
| 17489 | ✗ | json.EndObject(); | |
| 17490 | } | ||
| 17491 | } | ||
| 17492 | |||
| 17493 | // Custom pools | ||
| 17494 | { | ||
| 17495 | ✗ | VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); | |
| 17496 | ✗ | const size_t poolCount = m_Pools.size(); | |
| 17497 | ✗ | if (poolCount > 0) | |
| 17498 | { | ||
| 17499 | ✗ | json.WriteString("Pools"); | |
| 17500 | ✗ | json.BeginObject(); | |
| 17501 | ✗ | for (size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) | |
| 17502 | { | ||
| 17503 | ✗ | json.BeginString(); | |
| 17504 | ✗ | json.ContinueString(m_Pools[poolIndex]->GetId()); | |
| 17505 | ✗ | json.EndString(); | |
| 17506 | |||
| 17507 | ✗ | m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json); | |
| 17508 | } | ||
| 17509 | ✗ | json.EndObject(); | |
| 17510 | } | ||
| 17511 | ✗ | } | |
| 17512 | ✗ | } | |
| 17513 | |||
| 17514 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 17515 | |||
| 17516 | //////////////////////////////////////////////////////////////////////////////// | ||
| 17517 | // Public interface | ||
| 17518 | |||
| 17519 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( | ||
| 17520 | const VmaAllocatorCreateInfo* pCreateInfo, | ||
| 17521 | VmaAllocator* pAllocator) | ||
| 17522 | { | ||
| 17523 | ✗ | VMA_ASSERT(pCreateInfo && pAllocator); | |
| 17524 | ✗ | VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 || | |
| 17525 | (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 2)); | ||
| 17526 | VMA_DEBUG_LOG("vmaCreateAllocator"); | ||
| 17527 | ✗ | *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo); | |
| 17528 | ✗ | return (*pAllocator)->Init(pCreateInfo); | |
| 17529 | } | ||
| 17530 | |||
| 17531 | VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( | ||
| 17532 | VmaAllocator allocator) | ||
| 17533 | { | ||
| 17534 | ✗ | if (allocator != VK_NULL_HANDLE) | |
| 17535 | { | ||
| 17536 | VMA_DEBUG_LOG("vmaDestroyAllocator"); | ||
| 17537 | ✗ | VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; | |
| 17538 | ✗ | vma_delete(&allocationCallbacks, allocator); | |
| 17539 | } | ||
| 17540 | ✗ | } | |
| 17541 | |||
| 17542 | VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo) | ||
| 17543 | { | ||
| 17544 | ✗ | VMA_ASSERT(allocator && pAllocatorInfo); | |
| 17545 | ✗ | pAllocatorInfo->instance = allocator->m_hInstance; | |
| 17546 | ✗ | pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice(); | |
| 17547 | ✗ | pAllocatorInfo->device = allocator->m_hDevice; | |
| 17548 | ✗ | } | |
| 17549 | |||
| 17550 | VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( | ||
| 17551 | VmaAllocator allocator, | ||
| 17552 | const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties) | ||
| 17553 | { | ||
| 17554 | ✗ | VMA_ASSERT(allocator && ppPhysicalDeviceProperties); | |
| 17555 | ✗ | *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties; | |
| 17556 | ✗ | } | |
| 17557 | |||
| 17558 | VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( | ||
| 17559 | VmaAllocator allocator, | ||
| 17560 | const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties) | ||
| 17561 | { | ||
| 17562 | ✗ | VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties); | |
| 17563 | ✗ | *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps; | |
| 17564 | ✗ | } | |
| 17565 | |||
| 17566 | VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( | ||
| 17567 | VmaAllocator allocator, | ||
| 17568 | uint32_t memoryTypeIndex, | ||
| 17569 | VkMemoryPropertyFlags* pFlags) | ||
| 17570 | { | ||
| 17571 | ✗ | VMA_ASSERT(allocator && pFlags); | |
| 17572 | ✗ | VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount()); | |
| 17573 | ✗ | *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags; | |
| 17574 | ✗ | } | |
| 17575 | |||
| 17576 | VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( | ||
| 17577 | VmaAllocator allocator, | ||
| 17578 | uint32_t frameIndex) | ||
| 17579 | { | ||
| 17580 | ✗ | VMA_ASSERT(allocator); | |
| 17581 | ✗ | VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST); | |
| 17582 | |||
| 17583 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 17584 | |||
| 17585 | ✗ | allocator->SetCurrentFrameIndex(frameIndex); | |
| 17586 | ✗ | } | |
| 17587 | |||
| 17588 | VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( | ||
| 17589 | VmaAllocator allocator, | ||
| 17590 | VmaStats* pStats) | ||
| 17591 | { | ||
| 17592 | ✗ | VMA_ASSERT(allocator && pStats); | |
| 17593 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 17594 | ✗ | allocator->CalculateStats(pStats); | |
| 17595 | ✗ | } | |
| 17596 | |||
| 17597 | VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget( | ||
| 17598 | VmaAllocator allocator, | ||
| 17599 | VmaBudget* pBudget) | ||
| 17600 | { | ||
| 17601 | ✗ | VMA_ASSERT(allocator && pBudget); | |
| 17602 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 17603 | ✗ | allocator->GetBudget(pBudget, 0, allocator->GetMemoryHeapCount()); | |
| 17604 | ✗ | } | |
| 17605 | |||
| 17606 | #if VMA_STATS_STRING_ENABLED | ||
| 17607 | |||
| 17608 | VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( | ||
| 17609 | VmaAllocator allocator, | ||
| 17610 | char** ppStatsString, | ||
| 17611 | VkBool32 detailedMap) | ||
| 17612 | { | ||
| 17613 | ✗ | VMA_ASSERT(allocator && ppStatsString); | |
| 17614 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 17615 | |||
| 17616 | ✗ | VmaStringBuilder sb(allocator); | |
| 17617 | { | ||
| 17618 | ✗ | VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb); | |
| 17619 | ✗ | json.BeginObject(); | |
| 17620 | |||
| 17621 | VmaBudget budget[VK_MAX_MEMORY_HEAPS]; | ||
| 17622 | ✗ | allocator->GetBudget(budget, 0, allocator->GetMemoryHeapCount()); | |
| 17623 | |||
| 17624 | VmaStats stats; | ||
| 17625 | ✗ | allocator->CalculateStats(&stats); | |
| 17626 | |||
| 17627 | ✗ | json.WriteString("Total"); | |
| 17628 | ✗ | VmaPrintStatInfo(json, stats.total); | |
| 17629 | |||
| 17630 | ✗ | for (uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) | |
| 17631 | { | ||
| 17632 | ✗ | json.BeginString("Heap "); | |
| 17633 | ✗ | json.ContinueString(heapIndex); | |
| 17634 | ✗ | json.EndString(); | |
| 17635 | ✗ | json.BeginObject(); | |
| 17636 | |||
| 17637 | ✗ | json.WriteString("Size"); | |
| 17638 | ✗ | json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size); | |
| 17639 | |||
| 17640 | ✗ | json.WriteString("Flags"); | |
| 17641 | ✗ | json.BeginArray(true); | |
| 17642 | ✗ | if ((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0) | |
| 17643 | { | ||
| 17644 | ✗ | json.WriteString("DEVICE_LOCAL"); | |
| 17645 | } | ||
| 17646 | ✗ | json.EndArray(); | |
| 17647 | |||
| 17648 | ✗ | json.WriteString("Budget"); | |
| 17649 | ✗ | json.BeginObject(); | |
| 17650 | { | ||
| 17651 | ✗ | json.WriteString("BlockBytes"); | |
| 17652 | ✗ | json.WriteNumber(budget[heapIndex].blockBytes); | |
| 17653 | ✗ | json.WriteString("AllocationBytes"); | |
| 17654 | ✗ | json.WriteNumber(budget[heapIndex].allocationBytes); | |
| 17655 | ✗ | json.WriteString("Usage"); | |
| 17656 | ✗ | json.WriteNumber(budget[heapIndex].usage); | |
| 17657 | ✗ | json.WriteString("Budget"); | |
| 17658 | ✗ | json.WriteNumber(budget[heapIndex].budget); | |
| 17659 | } | ||
| 17660 | ✗ | json.EndObject(); | |
| 17661 | |||
| 17662 | ✗ | if (stats.memoryHeap[heapIndex].blockCount > 0) | |
| 17663 | { | ||
| 17664 | ✗ | json.WriteString("Stats"); | |
| 17665 | ✗ | VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]); | |
| 17666 | } | ||
| 17667 | |||
| 17668 | ✗ | for (uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) | |
| 17669 | { | ||
| 17670 | ✗ | if (allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) | |
| 17671 | { | ||
| 17672 | ✗ | json.BeginString("Type "); | |
| 17673 | ✗ | json.ContinueString(typeIndex); | |
| 17674 | ✗ | json.EndString(); | |
| 17675 | |||
| 17676 | ✗ | json.BeginObject(); | |
| 17677 | |||
| 17678 | ✗ | json.WriteString("Flags"); | |
| 17679 | ✗ | json.BeginArray(true); | |
| 17680 | ✗ | VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags; | |
| 17681 | ✗ | if ((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0) | |
| 17682 | { | ||
| 17683 | ✗ | json.WriteString("DEVICE_LOCAL"); | |
| 17684 | } | ||
| 17685 | ✗ | if ((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) | |
| 17686 | { | ||
| 17687 | ✗ | json.WriteString("HOST_VISIBLE"); | |
| 17688 | } | ||
| 17689 | ✗ | if ((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0) | |
| 17690 | { | ||
| 17691 | ✗ | json.WriteString("HOST_COHERENT"); | |
| 17692 | } | ||
| 17693 | ✗ | if ((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0) | |
| 17694 | { | ||
| 17695 | ✗ | json.WriteString("HOST_CACHED"); | |
| 17696 | } | ||
| 17697 | ✗ | if ((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0) | |
| 17698 | { | ||
| 17699 | ✗ | json.WriteString("LAZILY_ALLOCATED"); | |
| 17700 | } | ||
| 17701 | ✗ | if ((flags & VK_MEMORY_PROPERTY_PROTECTED_BIT) != 0) | |
| 17702 | { | ||
| 17703 | ✗ | json.WriteString(" PROTECTED"); | |
| 17704 | } | ||
| 17705 | ✗ | if ((flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0) | |
| 17706 | { | ||
| 17707 | ✗ | json.WriteString(" DEVICE_COHERENT"); | |
| 17708 | } | ||
| 17709 | ✗ | if ((flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY) != 0) | |
| 17710 | { | ||
| 17711 | ✗ | json.WriteString(" DEVICE_UNCACHED"); | |
| 17712 | } | ||
| 17713 | ✗ | json.EndArray(); | |
| 17714 | |||
| 17715 | ✗ | if (stats.memoryType[typeIndex].blockCount > 0) | |
| 17716 | { | ||
| 17717 | ✗ | json.WriteString("Stats"); | |
| 17718 | ✗ | VmaPrintStatInfo(json, stats.memoryType[typeIndex]); | |
| 17719 | } | ||
| 17720 | |||
| 17721 | ✗ | json.EndObject(); | |
| 17722 | } | ||
| 17723 | } | ||
| 17724 | |||
| 17725 | ✗ | json.EndObject(); | |
| 17726 | } | ||
| 17727 | ✗ | if (detailedMap == VK_TRUE) | |
| 17728 | { | ||
| 17729 | ✗ | allocator->PrintDetailedMap(json); | |
| 17730 | } | ||
| 17731 | |||
| 17732 | ✗ | json.EndObject(); | |
| 17733 | ✗ | } | |
| 17734 | |||
| 17735 | ✗ | const size_t len = sb.GetLength(); | |
| 17736 | ✗ | char* const pChars = vma_new_array(allocator, char, len + 1); | |
| 17737 | ✗ | if (len > 0) | |
| 17738 | { | ||
| 17739 | ✗ | memcpy(pChars, sb.GetData(), len); | |
| 17740 | } | ||
| 17741 | ✗ | pChars[len] = '\0'; | |
| 17742 | ✗ | *ppStatsString = pChars; | |
| 17743 | ✗ | } | |
| 17744 | |||
| 17745 | VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( | ||
| 17746 | VmaAllocator allocator, | ||
| 17747 | char* pStatsString) | ||
| 17748 | { | ||
| 17749 | ✗ | if (pStatsString != VMA_NULL) | |
| 17750 | { | ||
| 17751 | ✗ | VMA_ASSERT(allocator); | |
| 17752 | ✗ | size_t len = strlen(pStatsString); | |
| 17753 | ✗ | vma_delete_array(allocator, pStatsString, len + 1); | |
| 17754 | } | ||
| 17755 | ✗ | } | |
| 17756 | |||
| 17757 | #endif // #if VMA_STATS_STRING_ENABLED | ||
| 17758 | |||
| 17759 | /* | ||
| 17760 | This function is not protected by any mutex because it just reads immutable data. | ||
| 17761 | */ | ||
| 17762 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( | ||
| 17763 | VmaAllocator allocator, | ||
| 17764 | uint32_t memoryTypeBits, | ||
| 17765 | const VmaAllocationCreateInfo* pAllocationCreateInfo, | ||
| 17766 | uint32_t* pMemoryTypeIndex) | ||
| 17767 | { | ||
| 17768 | ✗ | VMA_ASSERT(allocator != VK_NULL_HANDLE); | |
| 17769 | ✗ | VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); | |
| 17770 | ✗ | VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); | |
| 17771 | |||
| 17772 | ✗ | memoryTypeBits &= allocator->GetGlobalMemoryTypeBits(); | |
| 17773 | |||
| 17774 | ✗ | if (pAllocationCreateInfo->memoryTypeBits != 0) | |
| 17775 | { | ||
| 17776 | ✗ | memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits; | |
| 17777 | } | ||
| 17778 | |||
| 17779 | ✗ | uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags; | |
| 17780 | ✗ | uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags; | |
| 17781 | ✗ | uint32_t notPreferredFlags = 0; | |
| 17782 | |||
| 17783 | // Convert usage to requiredFlags and preferredFlags. | ||
| 17784 | ✗ | switch (pAllocationCreateInfo->usage) | |
| 17785 | { | ||
| 17786 | ✗ | case VMA_MEMORY_USAGE_UNKNOWN: | |
| 17787 | ✗ | break; | |
| 17788 | ✗ | case VMA_MEMORY_USAGE_GPU_ONLY: | |
| 17789 | ✗ | if (!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) | |
| 17790 | { | ||
| 17791 | ✗ | preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; | |
| 17792 | } | ||
| 17793 | ✗ | break; | |
| 17794 | ✗ | case VMA_MEMORY_USAGE_CPU_ONLY: | |
| 17795 | ✗ | requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; | |
| 17796 | ✗ | break; | |
| 17797 | ✗ | case VMA_MEMORY_USAGE_CPU_TO_GPU: | |
| 17798 | ✗ | requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; | |
| 17799 | ✗ | if (!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) | |
| 17800 | { | ||
| 17801 | ✗ | preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; | |
| 17802 | } | ||
| 17803 | ✗ | break; | |
| 17804 | ✗ | case VMA_MEMORY_USAGE_GPU_TO_CPU: | |
| 17805 | ✗ | requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; | |
| 17806 | ✗ | preferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; | |
| 17807 | ✗ | break; | |
| 17808 | ✗ | case VMA_MEMORY_USAGE_CPU_COPY: | |
| 17809 | ✗ | notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; | |
| 17810 | ✗ | break; | |
| 17811 | ✗ | case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED: | |
| 17812 | ✗ | requiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; | |
| 17813 | ✗ | break; | |
| 17814 | ✗ | default: | |
| 17815 | ✗ | VMA_ASSERT(0); | |
| 17816 | break; | ||
| 17817 | } | ||
| 17818 | |||
| 17819 | // Avoid DEVICE_COHERENT unless explicitly requested. | ||
| 17820 | ✗ | if (((pAllocationCreateInfo->requiredFlags | pAllocationCreateInfo->preferredFlags) & | |
| 17821 | (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0) | ||
| 17822 | { | ||
| 17823 | ✗ | notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY; | |
| 17824 | } | ||
| 17825 | |||
| 17826 | ✗ | *pMemoryTypeIndex = UINT32_MAX; | |
| 17827 | ✗ | uint32_t minCost = UINT32_MAX; | |
| 17828 | ✗ | for (uint32_t memTypeIndex = 0, memTypeBit = 1; | |
| 17829 | ✗ | memTypeIndex < allocator->GetMemoryTypeCount(); | |
| 17830 | ✗ | ++memTypeIndex, memTypeBit <<= 1) | |
| 17831 | { | ||
| 17832 | // This memory type is acceptable according to memoryTypeBits bitmask. | ||
| 17833 | ✗ | if ((memTypeBit & memoryTypeBits) != 0) | |
| 17834 | { | ||
| 17835 | ✗ | const VkMemoryPropertyFlags currFlags = | |
| 17836 | allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; | ||
| 17837 | // This memory type contains requiredFlags. | ||
| 17838 | ✗ | if ((requiredFlags & ~currFlags) == 0) | |
| 17839 | { | ||
| 17840 | // Calculate cost as number of bits from preferredFlags not present in this memory type. | ||
| 17841 | ✗ | uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags) + | |
| 17842 | ✗ | VmaCountBitsSet(currFlags & notPreferredFlags); | |
| 17843 | // Remember memory type with lowest cost. | ||
| 17844 | ✗ | if (currCost < minCost) | |
| 17845 | { | ||
| 17846 | ✗ | *pMemoryTypeIndex = memTypeIndex; | |
| 17847 | ✗ | if (currCost == 0) | |
| 17848 | { | ||
| 17849 | ✗ | return VK_SUCCESS; | |
| 17850 | } | ||
| 17851 | ✗ | minCost = currCost; | |
| 17852 | } | ||
| 17853 | } | ||
| 17854 | } | ||
| 17855 | } | ||
| 17856 | ✗ | return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT; | |
| 17857 | } | ||
| 17858 | |||
| 17859 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( | ||
| 17860 | VmaAllocator allocator, | ||
| 17861 | const VkBufferCreateInfo* pBufferCreateInfo, | ||
| 17862 | const VmaAllocationCreateInfo* pAllocationCreateInfo, | ||
| 17863 | uint32_t* pMemoryTypeIndex) | ||
| 17864 | { | ||
| 17865 | ✗ | VMA_ASSERT(allocator != VK_NULL_HANDLE); | |
| 17866 | ✗ | VMA_ASSERT(pBufferCreateInfo != VMA_NULL); | |
| 17867 | ✗ | VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); | |
| 17868 | ✗ | VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); | |
| 17869 | |||
| 17870 | ✗ | const VkDevice hDev = allocator->m_hDevice; | |
| 17871 | ✗ | VkBuffer hBuffer = VK_NULL_HANDLE; | |
| 17872 | ✗ | VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer( | |
| 17873 | hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer); | ||
| 17874 | ✗ | if (res == VK_SUCCESS) | |
| 17875 | { | ||
| 17876 | ✗ | VkMemoryRequirements memReq = {}; | |
| 17877 | ✗ | allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements( | |
| 17878 | hDev, hBuffer, &memReq); | ||
| 17879 | |||
| 17880 | ✗ | res = vmaFindMemoryTypeIndex( | |
| 17881 | allocator, | ||
| 17882 | memReq.memoryTypeBits, | ||
| 17883 | pAllocationCreateInfo, | ||
| 17884 | pMemoryTypeIndex); | ||
| 17885 | |||
| 17886 | ✗ | allocator->GetVulkanFunctions().vkDestroyBuffer( | |
| 17887 | hDev, hBuffer, allocator->GetAllocationCallbacks()); | ||
| 17888 | } | ||
| 17889 | ✗ | return res; | |
| 17890 | } | ||
| 17891 | |||
| 17892 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( | ||
| 17893 | VmaAllocator allocator, | ||
| 17894 | const VkImageCreateInfo* pImageCreateInfo, | ||
| 17895 | const VmaAllocationCreateInfo* pAllocationCreateInfo, | ||
| 17896 | uint32_t* pMemoryTypeIndex) | ||
| 17897 | { | ||
| 17898 | ✗ | VMA_ASSERT(allocator != VK_NULL_HANDLE); | |
| 17899 | ✗ | VMA_ASSERT(pImageCreateInfo != VMA_NULL); | |
| 17900 | ✗ | VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); | |
| 17901 | ✗ | VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); | |
| 17902 | |||
| 17903 | ✗ | const VkDevice hDev = allocator->m_hDevice; | |
| 17904 | ✗ | VkImage hImage = VK_NULL_HANDLE; | |
| 17905 | ✗ | VkResult res = allocator->GetVulkanFunctions().vkCreateImage( | |
| 17906 | hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage); | ||
| 17907 | ✗ | if (res == VK_SUCCESS) | |
| 17908 | { | ||
| 17909 | ✗ | VkMemoryRequirements memReq = {}; | |
| 17910 | ✗ | allocator->GetVulkanFunctions().vkGetImageMemoryRequirements( | |
| 17911 | hDev, hImage, &memReq); | ||
| 17912 | |||
| 17913 | ✗ | res = vmaFindMemoryTypeIndex( | |
| 17914 | allocator, | ||
| 17915 | memReq.memoryTypeBits, | ||
| 17916 | pAllocationCreateInfo, | ||
| 17917 | pMemoryTypeIndex); | ||
| 17918 | |||
| 17919 | ✗ | allocator->GetVulkanFunctions().vkDestroyImage( | |
| 17920 | hDev, hImage, allocator->GetAllocationCallbacks()); | ||
| 17921 | } | ||
| 17922 | ✗ | return res; | |
| 17923 | } | ||
| 17924 | |||
| 17925 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( | ||
| 17926 | VmaAllocator allocator, | ||
| 17927 | const VmaPoolCreateInfo* pCreateInfo, | ||
| 17928 | VmaPool* pPool) | ||
| 17929 | { | ||
| 17930 | ✗ | VMA_ASSERT(allocator && pCreateInfo && pPool); | |
| 17931 | |||
| 17932 | VMA_DEBUG_LOG("vmaCreatePool"); | ||
| 17933 | |||
| 17934 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 17935 | |||
| 17936 | ✗ | VkResult res = allocator->CreatePool(pCreateInfo, pPool); | |
| 17937 | |||
| 17938 | #if VMA_RECORDING_ENABLED | ||
| 17939 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 17940 | { | ||
| 17941 | allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool); | ||
| 17942 | } | ||
| 17943 | #endif | ||
| 17944 | |||
| 17945 | ✗ | return res; | |
| 17946 | } | ||
| 17947 | |||
| 17948 | VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( | ||
| 17949 | VmaAllocator allocator, | ||
| 17950 | VmaPool pool) | ||
| 17951 | { | ||
| 17952 | ✗ | VMA_ASSERT(allocator); | |
| 17953 | |||
| 17954 | ✗ | if (pool == VK_NULL_HANDLE) | |
| 17955 | { | ||
| 17956 | ✗ | return; | |
| 17957 | } | ||
| 17958 | |||
| 17959 | VMA_DEBUG_LOG("vmaDestroyPool"); | ||
| 17960 | |||
| 17961 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 17962 | |||
| 17963 | #if VMA_RECORDING_ENABLED | ||
| 17964 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 17965 | { | ||
| 17966 | allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool); | ||
| 17967 | } | ||
| 17968 | #endif | ||
| 17969 | |||
| 17970 | ✗ | allocator->DestroyPool(pool); | |
| 17971 | } | ||
| 17972 | |||
| 17973 | VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( | ||
| 17974 | VmaAllocator allocator, | ||
| 17975 | VmaPool pool, | ||
| 17976 | VmaPoolStats* pPoolStats) | ||
| 17977 | { | ||
| 17978 | ✗ | VMA_ASSERT(allocator && pool && pPoolStats); | |
| 17979 | |||
| 17980 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 17981 | |||
| 17982 | ✗ | allocator->GetPoolStats(pool, pPoolStats); | |
| 17983 | ✗ | } | |
| 17984 | |||
| 17985 | VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost( | ||
| 17986 | VmaAllocator allocator, | ||
| 17987 | VmaPool pool, | ||
| 17988 | size_t* pLostAllocationCount) | ||
| 17989 | { | ||
| 17990 | ✗ | VMA_ASSERT(allocator && pool); | |
| 17991 | |||
| 17992 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 17993 | |||
| 17994 | #if VMA_RECORDING_ENABLED | ||
| 17995 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 17996 | { | ||
| 17997 | allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool); | ||
| 17998 | } | ||
| 17999 | #endif | ||
| 18000 | |||
| 18001 | ✗ | allocator->MakePoolAllocationsLost(pool, pLostAllocationCount); | |
| 18002 | ✗ | } | |
| 18003 | |||
| 18004 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) | ||
| 18005 | { | ||
| 18006 | ✗ | VMA_ASSERT(allocator && pool); | |
| 18007 | |||
| 18008 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18009 | |||
| 18010 | VMA_DEBUG_LOG("vmaCheckPoolCorruption"); | ||
| 18011 | |||
| 18012 | ✗ | return allocator->CheckPoolCorruption(pool); | |
| 18013 | } | ||
| 18014 | |||
| 18015 | VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( | ||
| 18016 | VmaAllocator allocator, | ||
| 18017 | VmaPool pool, | ||
| 18018 | const char** ppName) | ||
| 18019 | { | ||
| 18020 | ✗ | VMA_ASSERT(allocator && pool && ppName); | |
| 18021 | |||
| 18022 | VMA_DEBUG_LOG("vmaGetPoolName"); | ||
| 18023 | |||
| 18024 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18025 | |||
| 18026 | ✗ | * ppName = pool->GetName(); | |
| 18027 | ✗ | } | |
| 18028 | |||
| 18029 | VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( | ||
| 18030 | VmaAllocator allocator, | ||
| 18031 | VmaPool pool, | ||
| 18032 | const char* pName) | ||
| 18033 | { | ||
| 18034 | ✗ | VMA_ASSERT(allocator && pool); | |
| 18035 | |||
| 18036 | VMA_DEBUG_LOG("vmaSetPoolName"); | ||
| 18037 | |||
| 18038 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18039 | |||
| 18040 | ✗ | pool->SetName(pName); | |
| 18041 | |||
| 18042 | #if VMA_RECORDING_ENABLED | ||
| 18043 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18044 | { | ||
| 18045 | allocator->GetRecorder()->RecordSetPoolName(allocator->GetCurrentFrameIndex(), pool, pName); | ||
| 18046 | } | ||
| 18047 | #endif | ||
| 18048 | ✗ | } | |
| 18049 | |||
| 18050 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( | ||
| 18051 | VmaAllocator allocator, | ||
| 18052 | const VkMemoryRequirements* pVkMemoryRequirements, | ||
| 18053 | const VmaAllocationCreateInfo* pCreateInfo, | ||
| 18054 | VmaAllocation* pAllocation, | ||
| 18055 | VmaAllocationInfo* pAllocationInfo) | ||
| 18056 | { | ||
| 18057 | ✗ | VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation); | |
| 18058 | |||
| 18059 | VMA_DEBUG_LOG("vmaAllocateMemory"); | ||
| 18060 | |||
| 18061 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18062 | |||
| 18063 | ✗ | VkResult result = allocator->AllocateMemory( | |
| 18064 | *pVkMemoryRequirements, | ||
| 18065 | false, // requiresDedicatedAllocation | ||
| 18066 | false, // prefersDedicatedAllocation | ||
| 18067 | VK_NULL_HANDLE, // dedicatedBuffer | ||
| 18068 | UINT32_MAX, // dedicatedBufferUsage | ||
| 18069 | VK_NULL_HANDLE, // dedicatedImage | ||
| 18070 | *pCreateInfo, | ||
| 18071 | VMA_SUBALLOCATION_TYPE_UNKNOWN, | ||
| 18072 | 1, // allocationCount | ||
| 18073 | pAllocation); | ||
| 18074 | |||
| 18075 | #if VMA_RECORDING_ENABLED | ||
| 18076 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18077 | { | ||
| 18078 | allocator->GetRecorder()->RecordAllocateMemory( | ||
| 18079 | allocator->GetCurrentFrameIndex(), | ||
| 18080 | *pVkMemoryRequirements, | ||
| 18081 | *pCreateInfo, | ||
| 18082 | *pAllocation); | ||
| 18083 | } | ||
| 18084 | #endif | ||
| 18085 | |||
| 18086 | ✗ | if (pAllocationInfo != VMA_NULL && result == VK_SUCCESS) | |
| 18087 | { | ||
| 18088 | ✗ | allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); | |
| 18089 | } | ||
| 18090 | |||
| 18091 | ✗ | return result; | |
| 18092 | } | ||
| 18093 | |||
| 18094 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( | ||
| 18095 | VmaAllocator allocator, | ||
| 18096 | const VkMemoryRequirements* pVkMemoryRequirements, | ||
| 18097 | const VmaAllocationCreateInfo* pCreateInfo, | ||
| 18098 | size_t allocationCount, | ||
| 18099 | VmaAllocation* pAllocations, | ||
| 18100 | VmaAllocationInfo* pAllocationInfo) | ||
| 18101 | { | ||
| 18102 | ✗ | if (allocationCount == 0) | |
| 18103 | { | ||
| 18104 | ✗ | return VK_SUCCESS; | |
| 18105 | } | ||
| 18106 | |||
| 18107 | ✗ | VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations); | |
| 18108 | |||
| 18109 | VMA_DEBUG_LOG("vmaAllocateMemoryPages"); | ||
| 18110 | |||
| 18111 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18112 | |||
| 18113 | ✗ | VkResult result = allocator->AllocateMemory( | |
| 18114 | *pVkMemoryRequirements, | ||
| 18115 | false, // requiresDedicatedAllocation | ||
| 18116 | false, // prefersDedicatedAllocation | ||
| 18117 | VK_NULL_HANDLE, // dedicatedBuffer | ||
| 18118 | UINT32_MAX, // dedicatedBufferUsage | ||
| 18119 | VK_NULL_HANDLE, // dedicatedImage | ||
| 18120 | *pCreateInfo, | ||
| 18121 | VMA_SUBALLOCATION_TYPE_UNKNOWN, | ||
| 18122 | allocationCount, | ||
| 18123 | pAllocations); | ||
| 18124 | |||
| 18125 | #if VMA_RECORDING_ENABLED | ||
| 18126 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18127 | { | ||
| 18128 | allocator->GetRecorder()->RecordAllocateMemoryPages( | ||
| 18129 | allocator->GetCurrentFrameIndex(), | ||
| 18130 | *pVkMemoryRequirements, | ||
| 18131 | *pCreateInfo, | ||
| 18132 | (uint64_t)allocationCount, | ||
| 18133 | pAllocations); | ||
| 18134 | } | ||
| 18135 | #endif | ||
| 18136 | |||
| 18137 | ✗ | if (pAllocationInfo != VMA_NULL && result == VK_SUCCESS) | |
| 18138 | { | ||
| 18139 | ✗ | for (size_t i = 0; i < allocationCount; ++i) | |
| 18140 | { | ||
| 18141 | ✗ | allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i); | |
| 18142 | } | ||
| 18143 | } | ||
| 18144 | |||
| 18145 | ✗ | return result; | |
| 18146 | } | ||
| 18147 | |||
| 18148 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( | ||
| 18149 | VmaAllocator allocator, | ||
| 18150 | VkBuffer buffer, | ||
| 18151 | const VmaAllocationCreateInfo* pCreateInfo, | ||
| 18152 | VmaAllocation* pAllocation, | ||
| 18153 | VmaAllocationInfo* pAllocationInfo) | ||
| 18154 | { | ||
| 18155 | ✗ | VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation); | |
| 18156 | |||
| 18157 | VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer"); | ||
| 18158 | |||
| 18159 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18160 | |||
| 18161 | ✗ | VkMemoryRequirements vkMemReq = {}; | |
| 18162 | ✗ | bool requiresDedicatedAllocation = false; | |
| 18163 | ✗ | bool prefersDedicatedAllocation = false; | |
| 18164 | ✗ | allocator->GetBufferMemoryRequirements(buffer, vkMemReq, | |
| 18165 | requiresDedicatedAllocation, | ||
| 18166 | prefersDedicatedAllocation); | ||
| 18167 | |||
| 18168 | ✗ | VkResult result = allocator->AllocateMemory( | |
| 18169 | vkMemReq, | ||
| 18170 | requiresDedicatedAllocation, | ||
| 18171 | prefersDedicatedAllocation, | ||
| 18172 | buffer, // dedicatedBuffer | ||
| 18173 | UINT32_MAX, // dedicatedBufferUsage | ||
| 18174 | VK_NULL_HANDLE, // dedicatedImage | ||
| 18175 | *pCreateInfo, | ||
| 18176 | VMA_SUBALLOCATION_TYPE_BUFFER, | ||
| 18177 | 1, // allocationCount | ||
| 18178 | pAllocation); | ||
| 18179 | |||
| 18180 | #if VMA_RECORDING_ENABLED | ||
| 18181 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18182 | { | ||
| 18183 | allocator->GetRecorder()->RecordAllocateMemoryForBuffer( | ||
| 18184 | allocator->GetCurrentFrameIndex(), | ||
| 18185 | vkMemReq, | ||
| 18186 | requiresDedicatedAllocation, | ||
| 18187 | prefersDedicatedAllocation, | ||
| 18188 | *pCreateInfo, | ||
| 18189 | *pAllocation); | ||
| 18190 | } | ||
| 18191 | #endif | ||
| 18192 | |||
| 18193 | ✗ | if (pAllocationInfo && result == VK_SUCCESS) | |
| 18194 | { | ||
| 18195 | ✗ | allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); | |
| 18196 | } | ||
| 18197 | |||
| 18198 | ✗ | return result; | |
| 18199 | } | ||
| 18200 | |||
| 18201 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( | ||
| 18202 | VmaAllocator allocator, | ||
| 18203 | VkImage image, | ||
| 18204 | const VmaAllocationCreateInfo* pCreateInfo, | ||
| 18205 | VmaAllocation* pAllocation, | ||
| 18206 | VmaAllocationInfo* pAllocationInfo) | ||
| 18207 | { | ||
| 18208 | ✗ | VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation); | |
| 18209 | |||
| 18210 | VMA_DEBUG_LOG("vmaAllocateMemoryForImage"); | ||
| 18211 | |||
| 18212 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18213 | |||
| 18214 | ✗ | VkMemoryRequirements vkMemReq = {}; | |
| 18215 | ✗ | bool requiresDedicatedAllocation = false; | |
| 18216 | ✗ | bool prefersDedicatedAllocation = false; | |
| 18217 | ✗ | allocator->GetImageMemoryRequirements(image, vkMemReq, | |
| 18218 | requiresDedicatedAllocation, prefersDedicatedAllocation); | ||
| 18219 | |||
| 18220 | ✗ | VkResult result = allocator->AllocateMemory( | |
| 18221 | vkMemReq, | ||
| 18222 | requiresDedicatedAllocation, | ||
| 18223 | prefersDedicatedAllocation, | ||
| 18224 | VK_NULL_HANDLE, // dedicatedBuffer | ||
| 18225 | UINT32_MAX, // dedicatedBufferUsage | ||
| 18226 | image, // dedicatedImage | ||
| 18227 | *pCreateInfo, | ||
| 18228 | VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN, | ||
| 18229 | 1, // allocationCount | ||
| 18230 | pAllocation); | ||
| 18231 | |||
| 18232 | #if VMA_RECORDING_ENABLED | ||
| 18233 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18234 | { | ||
| 18235 | allocator->GetRecorder()->RecordAllocateMemoryForImage( | ||
| 18236 | allocator->GetCurrentFrameIndex(), | ||
| 18237 | vkMemReq, | ||
| 18238 | requiresDedicatedAllocation, | ||
| 18239 | prefersDedicatedAllocation, | ||
| 18240 | *pCreateInfo, | ||
| 18241 | *pAllocation); | ||
| 18242 | } | ||
| 18243 | #endif | ||
| 18244 | |||
| 18245 | ✗ | if (pAllocationInfo && result == VK_SUCCESS) | |
| 18246 | { | ||
| 18247 | ✗ | allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); | |
| 18248 | } | ||
| 18249 | |||
| 18250 | ✗ | return result; | |
| 18251 | } | ||
| 18252 | |||
| 18253 | VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( | ||
| 18254 | VmaAllocator allocator, | ||
| 18255 | VmaAllocation allocation) | ||
| 18256 | { | ||
| 18257 | ✗ | VMA_ASSERT(allocator); | |
| 18258 | |||
| 18259 | ✗ | if (allocation == VK_NULL_HANDLE) | |
| 18260 | { | ||
| 18261 | ✗ | return; | |
| 18262 | } | ||
| 18263 | |||
| 18264 | VMA_DEBUG_LOG("vmaFreeMemory"); | ||
| 18265 | |||
| 18266 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18267 | |||
| 18268 | #if VMA_RECORDING_ENABLED | ||
| 18269 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18270 | { | ||
| 18271 | allocator->GetRecorder()->RecordFreeMemory( | ||
| 18272 | allocator->GetCurrentFrameIndex(), | ||
| 18273 | allocation); | ||
| 18274 | } | ||
| 18275 | #endif | ||
| 18276 | |||
| 18277 | ✗ | allocator->FreeMemory( | |
| 18278 | 1, // allocationCount | ||
| 18279 | &allocation); | ||
| 18280 | } | ||
| 18281 | |||
| 18282 | VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( | ||
| 18283 | VmaAllocator allocator, | ||
| 18284 | size_t allocationCount, | ||
| 18285 | const VmaAllocation* pAllocations) | ||
| 18286 | { | ||
| 18287 | ✗ | if (allocationCount == 0) | |
| 18288 | { | ||
| 18289 | ✗ | return; | |
| 18290 | } | ||
| 18291 | |||
| 18292 | ✗ | VMA_ASSERT(allocator); | |
| 18293 | |||
| 18294 | VMA_DEBUG_LOG("vmaFreeMemoryPages"); | ||
| 18295 | |||
| 18296 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18297 | |||
| 18298 | #if VMA_RECORDING_ENABLED | ||
| 18299 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18300 | { | ||
| 18301 | allocator->GetRecorder()->RecordFreeMemoryPages( | ||
| 18302 | allocator->GetCurrentFrameIndex(), | ||
| 18303 | (uint64_t)allocationCount, | ||
| 18304 | pAllocations); | ||
| 18305 | } | ||
| 18306 | #endif | ||
| 18307 | |||
| 18308 | ✗ | allocator->FreeMemory(allocationCount, pAllocations); | |
| 18309 | } | ||
| 18310 | |||
| 18311 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation( | ||
| 18312 | VmaAllocator allocator, | ||
| 18313 | VmaAllocation allocation, | ||
| 18314 | VkDeviceSize newSize) | ||
| 18315 | { | ||
| 18316 | ✗ | VMA_ASSERT(allocator && allocation); | |
| 18317 | |||
| 18318 | VMA_DEBUG_LOG("vmaResizeAllocation"); | ||
| 18319 | |||
| 18320 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18321 | |||
| 18322 | ✗ | return allocator->ResizeAllocation(allocation, newSize); | |
| 18323 | } | ||
| 18324 | |||
| 18325 | VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( | ||
| 18326 | VmaAllocator allocator, | ||
| 18327 | VmaAllocation allocation, | ||
| 18328 | VmaAllocationInfo* pAllocationInfo) | ||
| 18329 | { | ||
| 18330 | ✗ | VMA_ASSERT(allocator && allocation && pAllocationInfo); | |
| 18331 | |||
| 18332 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18333 | |||
| 18334 | #if VMA_RECORDING_ENABLED | ||
| 18335 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18336 | { | ||
| 18337 | allocator->GetRecorder()->RecordGetAllocationInfo( | ||
| 18338 | allocator->GetCurrentFrameIndex(), | ||
| 18339 | allocation); | ||
| 18340 | } | ||
| 18341 | #endif | ||
| 18342 | |||
| 18343 | ✗ | allocator->GetAllocationInfo(allocation, pAllocationInfo); | |
| 18344 | ✗ | } | |
| 18345 | |||
| 18346 | VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation( | ||
| 18347 | VmaAllocator allocator, | ||
| 18348 | VmaAllocation allocation) | ||
| 18349 | { | ||
| 18350 | ✗ | VMA_ASSERT(allocator && allocation); | |
| 18351 | |||
| 18352 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18353 | |||
| 18354 | #if VMA_RECORDING_ENABLED | ||
| 18355 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18356 | { | ||
| 18357 | allocator->GetRecorder()->RecordTouchAllocation( | ||
| 18358 | allocator->GetCurrentFrameIndex(), | ||
| 18359 | allocation); | ||
| 18360 | } | ||
| 18361 | #endif | ||
| 18362 | |||
| 18363 | ✗ | return allocator->TouchAllocation(allocation); | |
| 18364 | } | ||
| 18365 | |||
| 18366 | VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( | ||
| 18367 | VmaAllocator allocator, | ||
| 18368 | VmaAllocation allocation, | ||
| 18369 | void* pUserData) | ||
| 18370 | { | ||
| 18371 | ✗ | VMA_ASSERT(allocator && allocation); | |
| 18372 | |||
| 18373 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18374 | |||
| 18375 | ✗ | allocation->SetUserData(allocator, pUserData); | |
| 18376 | |||
| 18377 | #if VMA_RECORDING_ENABLED | ||
| 18378 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18379 | { | ||
| 18380 | allocator->GetRecorder()->RecordSetAllocationUserData( | ||
| 18381 | allocator->GetCurrentFrameIndex(), | ||
| 18382 | allocation, | ||
| 18383 | pUserData); | ||
| 18384 | } | ||
| 18385 | #endif | ||
| 18386 | ✗ | } | |
| 18387 | |||
| 18388 | VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation( | ||
| 18389 | VmaAllocator allocator, | ||
| 18390 | VmaAllocation* pAllocation) | ||
| 18391 | { | ||
| 18392 | ✗ | VMA_ASSERT(allocator && pAllocation); | |
| 18393 | |||
| 18394 | VMA_DEBUG_GLOBAL_MUTEX_LOCK; | ||
| 18395 | |||
| 18396 | ✗ | allocator->CreateLostAllocation(pAllocation); | |
| 18397 | |||
| 18398 | #if VMA_RECORDING_ENABLED | ||
| 18399 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18400 | { | ||
| 18401 | allocator->GetRecorder()->RecordCreateLostAllocation( | ||
| 18402 | allocator->GetCurrentFrameIndex(), | ||
| 18403 | *pAllocation); | ||
| 18404 | } | ||
| 18405 | #endif | ||
| 18406 | ✗ | } | |
| 18407 | |||
| 18408 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( | ||
| 18409 | VmaAllocator allocator, | ||
| 18410 | VmaAllocation allocation, | ||
| 18411 | void** ppData) | ||
| 18412 | { | ||
| 18413 | ✗ | VMA_ASSERT(allocator && allocation && ppData); | |
| 18414 | |||
| 18415 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18416 | |||
| 18417 | ✗ | VkResult res = allocator->Map(allocation, ppData); | |
| 18418 | |||
| 18419 | #if VMA_RECORDING_ENABLED | ||
| 18420 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18421 | { | ||
| 18422 | allocator->GetRecorder()->RecordMapMemory( | ||
| 18423 | allocator->GetCurrentFrameIndex(), | ||
| 18424 | allocation); | ||
| 18425 | } | ||
| 18426 | #endif | ||
| 18427 | |||
| 18428 | ✗ | return res; | |
| 18429 | } | ||
| 18430 | |||
| 18431 | VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( | ||
| 18432 | VmaAllocator allocator, | ||
| 18433 | VmaAllocation allocation) | ||
| 18434 | { | ||
| 18435 | ✗ | VMA_ASSERT(allocator && allocation); | |
| 18436 | |||
| 18437 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18438 | |||
| 18439 | #if VMA_RECORDING_ENABLED | ||
| 18440 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18441 | { | ||
| 18442 | allocator->GetRecorder()->RecordUnmapMemory( | ||
| 18443 | allocator->GetCurrentFrameIndex(), | ||
| 18444 | allocation); | ||
| 18445 | } | ||
| 18446 | #endif | ||
| 18447 | |||
| 18448 | ✗ | allocator->Unmap(allocation); | |
| 18449 | ✗ | } | |
| 18450 | |||
| 18451 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) | ||
| 18452 | { | ||
| 18453 | ✗ | VMA_ASSERT(allocator && allocation); | |
| 18454 | |||
| 18455 | VMA_DEBUG_LOG("vmaFlushAllocation"); | ||
| 18456 | |||
| 18457 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18458 | |||
| 18459 | ✗ | const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH); | |
| 18460 | |||
| 18461 | #if VMA_RECORDING_ENABLED | ||
| 18462 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18463 | { | ||
| 18464 | allocator->GetRecorder()->RecordFlushAllocation( | ||
| 18465 | allocator->GetCurrentFrameIndex(), | ||
| 18466 | allocation, offset, size); | ||
| 18467 | } | ||
| 18468 | #endif | ||
| 18469 | |||
| 18470 | ✗ | return res; | |
| 18471 | } | ||
| 18472 | |||
| 18473 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) | ||
| 18474 | { | ||
| 18475 | ✗ | VMA_ASSERT(allocator && allocation); | |
| 18476 | |||
| 18477 | VMA_DEBUG_LOG("vmaInvalidateAllocation"); | ||
| 18478 | |||
| 18479 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18480 | |||
| 18481 | ✗ | const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE); | |
| 18482 | |||
| 18483 | #if VMA_RECORDING_ENABLED | ||
| 18484 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18485 | { | ||
| 18486 | allocator->GetRecorder()->RecordInvalidateAllocation( | ||
| 18487 | allocator->GetCurrentFrameIndex(), | ||
| 18488 | allocation, offset, size); | ||
| 18489 | } | ||
| 18490 | #endif | ||
| 18491 | |||
| 18492 | ✗ | return res; | |
| 18493 | } | ||
| 18494 | |||
| 18495 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( | ||
| 18496 | VmaAllocator allocator, | ||
| 18497 | uint32_t allocationCount, | ||
| 18498 | const VmaAllocation* allocations, | ||
| 18499 | const VkDeviceSize* offsets, | ||
| 18500 | const VkDeviceSize* sizes) | ||
| 18501 | { | ||
| 18502 | ✗ | VMA_ASSERT(allocator); | |
| 18503 | |||
| 18504 | ✗ | if (allocationCount == 0) | |
| 18505 | { | ||
| 18506 | ✗ | return VK_SUCCESS; | |
| 18507 | } | ||
| 18508 | |||
| 18509 | ✗ | VMA_ASSERT(allocations); | |
| 18510 | |||
| 18511 | VMA_DEBUG_LOG("vmaFlushAllocations"); | ||
| 18512 | |||
| 18513 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18514 | |||
| 18515 | ✗ | const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH); | |
| 18516 | |||
| 18517 | #if VMA_RECORDING_ENABLED | ||
| 18518 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18519 | { | ||
| 18520 | //TODO | ||
| 18521 | } | ||
| 18522 | #endif | ||
| 18523 | |||
| 18524 | ✗ | return res; | |
| 18525 | } | ||
| 18526 | |||
| 18527 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( | ||
| 18528 | VmaAllocator allocator, | ||
| 18529 | uint32_t allocationCount, | ||
| 18530 | const VmaAllocation* allocations, | ||
| 18531 | const VkDeviceSize* offsets, | ||
| 18532 | const VkDeviceSize* sizes) | ||
| 18533 | { | ||
| 18534 | ✗ | VMA_ASSERT(allocator); | |
| 18535 | |||
| 18536 | ✗ | if (allocationCount == 0) | |
| 18537 | { | ||
| 18538 | ✗ | return VK_SUCCESS; | |
| 18539 | } | ||
| 18540 | |||
| 18541 | ✗ | VMA_ASSERT(allocations); | |
| 18542 | |||
| 18543 | VMA_DEBUG_LOG("vmaInvalidateAllocations"); | ||
| 18544 | |||
| 18545 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18546 | |||
| 18547 | ✗ | const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE); | |
| 18548 | |||
| 18549 | #if VMA_RECORDING_ENABLED | ||
| 18550 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18551 | { | ||
| 18552 | //TODO | ||
| 18553 | } | ||
| 18554 | #endif | ||
| 18555 | |||
| 18556 | ✗ | return res; | |
| 18557 | } | ||
| 18558 | |||
| 18559 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits) | ||
| 18560 | { | ||
| 18561 | ✗ | VMA_ASSERT(allocator); | |
| 18562 | |||
| 18563 | VMA_DEBUG_LOG("vmaCheckCorruption"); | ||
| 18564 | |||
| 18565 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18566 | |||
| 18567 | ✗ | return allocator->CheckCorruption(memoryTypeBits); | |
| 18568 | } | ||
| 18569 | |||
| 18570 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( | ||
| 18571 | VmaAllocator allocator, | ||
| 18572 | const VmaAllocation* pAllocations, | ||
| 18573 | size_t allocationCount, | ||
| 18574 | VkBool32* pAllocationsChanged, | ||
| 18575 | const VmaDefragmentationInfo* pDefragmentationInfo, | ||
| 18576 | VmaDefragmentationStats* pDefragmentationStats) | ||
| 18577 | { | ||
| 18578 | // Deprecated interface, reimplemented using new one. | ||
| 18579 | |||
| 18580 | ✗ | VmaDefragmentationInfo2 info2 = {}; | |
| 18581 | ✗ | info2.allocationCount = (uint32_t)allocationCount; | |
| 18582 | ✗ | info2.pAllocations = pAllocations; | |
| 18583 | ✗ | info2.pAllocationsChanged = pAllocationsChanged; | |
| 18584 | ✗ | if (pDefragmentationInfo != VMA_NULL) | |
| 18585 | { | ||
| 18586 | ✗ | info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove; | |
| 18587 | ✗ | info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove; | |
| 18588 | } | ||
| 18589 | else | ||
| 18590 | { | ||
| 18591 | ✗ | info2.maxCpuAllocationsToMove = UINT32_MAX; | |
| 18592 | ✗ | info2.maxCpuBytesToMove = VK_WHOLE_SIZE; | |
| 18593 | } | ||
| 18594 | // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero. | ||
| 18595 | |||
| 18596 | VmaDefragmentationContext ctx; | ||
| 18597 | ✗ | VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx); | |
| 18598 | ✗ | if (res == VK_NOT_READY) | |
| 18599 | { | ||
| 18600 | ✗ | res = vmaDefragmentationEnd(allocator, ctx); | |
| 18601 | } | ||
| 18602 | ✗ | return res; | |
| 18603 | } | ||
| 18604 | |||
| 18605 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( | ||
| 18606 | VmaAllocator allocator, | ||
| 18607 | const VmaDefragmentationInfo2* pInfo, | ||
| 18608 | VmaDefragmentationStats* pStats, | ||
| 18609 | VmaDefragmentationContext* pContext) | ||
| 18610 | { | ||
| 18611 | ✗ | VMA_ASSERT(allocator && pInfo && pContext); | |
| 18612 | |||
| 18613 | // Degenerate case: Nothing to defragment. | ||
| 18614 | ✗ | if (pInfo->allocationCount == 0 && pInfo->poolCount == 0) | |
| 18615 | { | ||
| 18616 | ✗ | return VK_SUCCESS; | |
| 18617 | } | ||
| 18618 | |||
| 18619 | ✗ | VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL); | |
| 18620 | ✗ | VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL); | |
| 18621 | VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations)); | ||
| 18622 | VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools)); | ||
| 18623 | |||
| 18624 | VMA_DEBUG_LOG("vmaDefragmentationBegin"); | ||
| 18625 | |||
| 18626 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18627 | |||
| 18628 | ✗ | VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext); | |
| 18629 | |||
| 18630 | #if VMA_RECORDING_ENABLED | ||
| 18631 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18632 | { | ||
| 18633 | allocator->GetRecorder()->RecordDefragmentationBegin( | ||
| 18634 | allocator->GetCurrentFrameIndex(), *pInfo, *pContext); | ||
| 18635 | } | ||
| 18636 | #endif | ||
| 18637 | |||
| 18638 | ✗ | return res; | |
| 18639 | } | ||
| 18640 | |||
| 18641 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( | ||
| 18642 | VmaAllocator allocator, | ||
| 18643 | VmaDefragmentationContext context) | ||
| 18644 | { | ||
| 18645 | ✗ | VMA_ASSERT(allocator); | |
| 18646 | |||
| 18647 | VMA_DEBUG_LOG("vmaDefragmentationEnd"); | ||
| 18648 | |||
| 18649 | ✗ | if (context != VK_NULL_HANDLE) | |
| 18650 | { | ||
| 18651 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18652 | |||
| 18653 | #if VMA_RECORDING_ENABLED | ||
| 18654 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18655 | { | ||
| 18656 | allocator->GetRecorder()->RecordDefragmentationEnd( | ||
| 18657 | allocator->GetCurrentFrameIndex(), context); | ||
| 18658 | } | ||
| 18659 | #endif | ||
| 18660 | |||
| 18661 | ✗ | return allocator->DefragmentationEnd(context); | |
| 18662 | } | ||
| 18663 | else | ||
| 18664 | { | ||
| 18665 | ✗ | return VK_SUCCESS; | |
| 18666 | } | ||
| 18667 | } | ||
| 18668 | |||
| 18669 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( | ||
| 18670 | VmaAllocator allocator, | ||
| 18671 | VmaDefragmentationContext context, | ||
| 18672 | VmaDefragmentationPassInfo* pInfo | ||
| 18673 | ) | ||
| 18674 | { | ||
| 18675 | ✗ | VMA_ASSERT(allocator); | |
| 18676 | ✗ | VMA_ASSERT(pInfo); | |
| 18677 | |||
| 18678 | VMA_DEBUG_LOG("vmaBeginDefragmentationPass"); | ||
| 18679 | |||
| 18680 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18681 | |||
| 18682 | ✗ | if (context == VK_NULL_HANDLE) | |
| 18683 | { | ||
| 18684 | ✗ | pInfo->moveCount = 0; | |
| 18685 | ✗ | return VK_SUCCESS; | |
| 18686 | } | ||
| 18687 | |||
| 18688 | ✗ | return allocator->DefragmentationPassBegin(pInfo, context); | |
| 18689 | } | ||
| 18690 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( | ||
| 18691 | VmaAllocator allocator, | ||
| 18692 | VmaDefragmentationContext context) | ||
| 18693 | { | ||
| 18694 | ✗ | VMA_ASSERT(allocator); | |
| 18695 | |||
| 18696 | VMA_DEBUG_LOG("vmaEndDefragmentationPass"); | ||
| 18697 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18698 | |||
| 18699 | ✗ | if (context == VK_NULL_HANDLE) | |
| 18700 | ✗ | return VK_SUCCESS; | |
| 18701 | |||
| 18702 | ✗ | return allocator->DefragmentationPassEnd(context); | |
| 18703 | } | ||
| 18704 | |||
| 18705 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( | ||
| 18706 | VmaAllocator allocator, | ||
| 18707 | VmaAllocation allocation, | ||
| 18708 | VkBuffer buffer) | ||
| 18709 | { | ||
| 18710 | ✗ | VMA_ASSERT(allocator && allocation && buffer); | |
| 18711 | |||
| 18712 | VMA_DEBUG_LOG("vmaBindBufferMemory"); | ||
| 18713 | |||
| 18714 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18715 | |||
| 18716 | ✗ | return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL); | |
| 18717 | } | ||
| 18718 | |||
| 18719 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( | ||
| 18720 | VmaAllocator allocator, | ||
| 18721 | VmaAllocation allocation, | ||
| 18722 | VkDeviceSize allocationLocalOffset, | ||
| 18723 | VkBuffer buffer, | ||
| 18724 | const void* pNext) | ||
| 18725 | { | ||
| 18726 | ✗ | VMA_ASSERT(allocator && allocation && buffer); | |
| 18727 | |||
| 18728 | VMA_DEBUG_LOG("vmaBindBufferMemory2"); | ||
| 18729 | |||
| 18730 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18731 | |||
| 18732 | ✗ | return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext); | |
| 18733 | } | ||
| 18734 | |||
| 18735 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( | ||
| 18736 | VmaAllocator allocator, | ||
| 18737 | VmaAllocation allocation, | ||
| 18738 | VkImage image) | ||
| 18739 | { | ||
| 18740 | ✗ | VMA_ASSERT(allocator && allocation && image); | |
| 18741 | |||
| 18742 | VMA_DEBUG_LOG("vmaBindImageMemory"); | ||
| 18743 | |||
| 18744 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18745 | |||
| 18746 | ✗ | return allocator->BindImageMemory(allocation, 0, image, VMA_NULL); | |
| 18747 | } | ||
| 18748 | |||
| 18749 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( | ||
| 18750 | VmaAllocator allocator, | ||
| 18751 | VmaAllocation allocation, | ||
| 18752 | VkDeviceSize allocationLocalOffset, | ||
| 18753 | VkImage image, | ||
| 18754 | const void* pNext) | ||
| 18755 | { | ||
| 18756 | ✗ | VMA_ASSERT(allocator && allocation && image); | |
| 18757 | |||
| 18758 | VMA_DEBUG_LOG("vmaBindImageMemory2"); | ||
| 18759 | |||
| 18760 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18761 | |||
| 18762 | ✗ | return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext); | |
| 18763 | } | ||
| 18764 | |||
| 18765 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( | ||
| 18766 | VmaAllocator allocator, | ||
| 18767 | const VkBufferCreateInfo* pBufferCreateInfo, | ||
| 18768 | const VmaAllocationCreateInfo* pAllocationCreateInfo, | ||
| 18769 | VkBuffer* pBuffer, | ||
| 18770 | VmaAllocation* pAllocation, | ||
| 18771 | VmaAllocationInfo* pAllocationInfo) | ||
| 18772 | { | ||
| 18773 | ✗ | VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation); | |
| 18774 | |||
| 18775 | ✗ | if (pBufferCreateInfo->size == 0) | |
| 18776 | { | ||
| 18777 | ✗ | return VK_ERROR_VALIDATION_FAILED_EXT; | |
| 18778 | } | ||
| 18779 | ✗ | if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && | |
| 18780 | ✗ | !allocator->m_UseKhrBufferDeviceAddress) | |
| 18781 | { | ||
| 18782 | ✗ | VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); | |
| 18783 | return VK_ERROR_VALIDATION_FAILED_EXT; | ||
| 18784 | } | ||
| 18785 | |||
| 18786 | VMA_DEBUG_LOG("vmaCreateBuffer"); | ||
| 18787 | |||
| 18788 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18789 | |||
| 18790 | ✗ | * pBuffer = VK_NULL_HANDLE; | |
| 18791 | ✗ | *pAllocation = VK_NULL_HANDLE; | |
| 18792 | |||
| 18793 | // 1. Create VkBuffer. | ||
| 18794 | ✗ | VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( | |
| 18795 | allocator->m_hDevice, | ||
| 18796 | pBufferCreateInfo, | ||
| 18797 | allocator->GetAllocationCallbacks(), | ||
| 18798 | pBuffer); | ||
| 18799 | ✗ | if (res >= 0) | |
| 18800 | { | ||
| 18801 | // 2. vkGetBufferMemoryRequirements. | ||
| 18802 | ✗ | VkMemoryRequirements vkMemReq = {}; | |
| 18803 | ✗ | bool requiresDedicatedAllocation = false; | |
| 18804 | ✗ | bool prefersDedicatedAllocation = false; | |
| 18805 | ✗ | allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, | |
| 18806 | requiresDedicatedAllocation, prefersDedicatedAllocation); | ||
| 18807 | |||
| 18808 | // 3. Allocate memory using allocator. | ||
| 18809 | ✗ | res = allocator->AllocateMemory( | |
| 18810 | vkMemReq, | ||
| 18811 | requiresDedicatedAllocation, | ||
| 18812 | prefersDedicatedAllocation, | ||
| 18813 | *pBuffer, // dedicatedBuffer | ||
| 18814 | ✗ | pBufferCreateInfo->usage, // dedicatedBufferUsage | |
| 18815 | VK_NULL_HANDLE, // dedicatedImage | ||
| 18816 | *pAllocationCreateInfo, | ||
| 18817 | VMA_SUBALLOCATION_TYPE_BUFFER, | ||
| 18818 | 1, // allocationCount | ||
| 18819 | pAllocation); | ||
| 18820 | |||
| 18821 | #if VMA_RECORDING_ENABLED | ||
| 18822 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18823 | { | ||
| 18824 | allocator->GetRecorder()->RecordCreateBuffer( | ||
| 18825 | allocator->GetCurrentFrameIndex(), | ||
| 18826 | *pBufferCreateInfo, | ||
| 18827 | *pAllocationCreateInfo, | ||
| 18828 | *pAllocation); | ||
| 18829 | } | ||
| 18830 | #endif | ||
| 18831 | |||
| 18832 | ✗ | if (res >= 0) | |
| 18833 | { | ||
| 18834 | // 3. Bind buffer with memory. | ||
| 18835 | ✗ | if ((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) | |
| 18836 | { | ||
| 18837 | ✗ | res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); | |
| 18838 | } | ||
| 18839 | ✗ | if (res >= 0) | |
| 18840 | { | ||
| 18841 | // All steps succeeded. | ||
| 18842 | #if VMA_STATS_STRING_ENABLED | ||
| 18843 | ✗ | (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); | |
| 18844 | #endif | ||
| 18845 | ✗ | if (pAllocationInfo != VMA_NULL) | |
| 18846 | { | ||
| 18847 | ✗ | allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); | |
| 18848 | } | ||
| 18849 | |||
| 18850 | ✗ | return VK_SUCCESS; | |
| 18851 | } | ||
| 18852 | ✗ | allocator->FreeMemory( | |
| 18853 | 1, // allocationCount | ||
| 18854 | pAllocation); | ||
| 18855 | ✗ | *pAllocation = VK_NULL_HANDLE; | |
| 18856 | ✗ | (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); | |
| 18857 | ✗ | *pBuffer = VK_NULL_HANDLE; | |
| 18858 | ✗ | return res; | |
| 18859 | } | ||
| 18860 | ✗ | (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); | |
| 18861 | ✗ | *pBuffer = VK_NULL_HANDLE; | |
| 18862 | ✗ | return res; | |
| 18863 | } | ||
| 18864 | ✗ | return res; | |
| 18865 | } | ||
| 18866 | |||
| 18867 | VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( | ||
| 18868 | VmaAllocator allocator, | ||
| 18869 | VkBuffer buffer, | ||
| 18870 | VmaAllocation allocation) | ||
| 18871 | { | ||
| 18872 | ✗ | VMA_ASSERT(allocator); | |
| 18873 | |||
| 18874 | ✗ | if (buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) | |
| 18875 | { | ||
| 18876 | ✗ | return; | |
| 18877 | } | ||
| 18878 | |||
| 18879 | VMA_DEBUG_LOG("vmaDestroyBuffer"); | ||
| 18880 | |||
| 18881 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18882 | |||
| 18883 | #if VMA_RECORDING_ENABLED | ||
| 18884 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18885 | { | ||
| 18886 | allocator->GetRecorder()->RecordDestroyBuffer( | ||
| 18887 | allocator->GetCurrentFrameIndex(), | ||
| 18888 | allocation); | ||
| 18889 | } | ||
| 18890 | #endif | ||
| 18891 | |||
| 18892 | ✗ | if (buffer != VK_NULL_HANDLE) | |
| 18893 | { | ||
| 18894 | ✗ | (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks()); | |
| 18895 | } | ||
| 18896 | |||
| 18897 | ✗ | if (allocation != VK_NULL_HANDLE) | |
| 18898 | { | ||
| 18899 | ✗ | allocator->FreeMemory( | |
| 18900 | 1, // allocationCount | ||
| 18901 | &allocation); | ||
| 18902 | } | ||
| 18903 | } | ||
| 18904 | |||
| 18905 | VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( | ||
| 18906 | VmaAllocator allocator, | ||
| 18907 | const VkImageCreateInfo* pImageCreateInfo, | ||
| 18908 | const VmaAllocationCreateInfo* pAllocationCreateInfo, | ||
| 18909 | VkImage* pImage, | ||
| 18910 | VmaAllocation* pAllocation, | ||
| 18911 | VmaAllocationInfo* pAllocationInfo) | ||
| 18912 | { | ||
| 18913 | ✗ | VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation); | |
| 18914 | |||
| 18915 | ✗ | if (pImageCreateInfo->extent.width == 0 || | |
| 18916 | ✗ | pImageCreateInfo->extent.height == 0 || | |
| 18917 | ✗ | pImageCreateInfo->extent.depth == 0 || | |
| 18918 | ✗ | pImageCreateInfo->mipLevels == 0 || | |
| 18919 | ✗ | pImageCreateInfo->arrayLayers == 0) | |
| 18920 | { | ||
| 18921 | ✗ | return VK_ERROR_VALIDATION_FAILED_EXT; | |
| 18922 | } | ||
| 18923 | |||
| 18924 | VMA_DEBUG_LOG("vmaCreateImage"); | ||
| 18925 | |||
| 18926 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 18927 | |||
| 18928 | ✗ | * pImage = VK_NULL_HANDLE; | |
| 18929 | ✗ | *pAllocation = VK_NULL_HANDLE; | |
| 18930 | |||
| 18931 | // 1. Create VkImage. | ||
| 18932 | ✗ | VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( | |
| 18933 | allocator->m_hDevice, | ||
| 18934 | pImageCreateInfo, | ||
| 18935 | allocator->GetAllocationCallbacks(), | ||
| 18936 | pImage); | ||
| 18937 | ✗ | if (res >= 0) | |
| 18938 | { | ||
| 18939 | ✗ | VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ? | |
| 18940 | VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL : | ||
| 18941 | VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR; | ||
| 18942 | |||
| 18943 | // 2. Allocate memory using allocator. | ||
| 18944 | ✗ | VkMemoryRequirements vkMemReq = {}; | |
| 18945 | ✗ | bool requiresDedicatedAllocation = false; | |
| 18946 | ✗ | bool prefersDedicatedAllocation = false; | |
| 18947 | ✗ | allocator->GetImageMemoryRequirements(*pImage, vkMemReq, | |
| 18948 | requiresDedicatedAllocation, prefersDedicatedAllocation); | ||
| 18949 | |||
| 18950 | ✗ | res = allocator->AllocateMemory( | |
| 18951 | vkMemReq, | ||
| 18952 | requiresDedicatedAllocation, | ||
| 18953 | prefersDedicatedAllocation, | ||
| 18954 | VK_NULL_HANDLE, // dedicatedBuffer | ||
| 18955 | UINT32_MAX, // dedicatedBufferUsage | ||
| 18956 | *pImage, // dedicatedImage | ||
| 18957 | *pAllocationCreateInfo, | ||
| 18958 | suballocType, | ||
| 18959 | 1, // allocationCount | ||
| 18960 | pAllocation); | ||
| 18961 | |||
| 18962 | #if VMA_RECORDING_ENABLED | ||
| 18963 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 18964 | { | ||
| 18965 | allocator->GetRecorder()->RecordCreateImage( | ||
| 18966 | allocator->GetCurrentFrameIndex(), | ||
| 18967 | *pImageCreateInfo, | ||
| 18968 | *pAllocationCreateInfo, | ||
| 18969 | *pAllocation); | ||
| 18970 | } | ||
| 18971 | #endif | ||
| 18972 | |||
| 18973 | ✗ | if (res >= 0) | |
| 18974 | { | ||
| 18975 | // 3. Bind image with memory. | ||
| 18976 | ✗ | if ((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) | |
| 18977 | { | ||
| 18978 | ✗ | res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL); | |
| 18979 | } | ||
| 18980 | ✗ | if (res >= 0) | |
| 18981 | { | ||
| 18982 | // All steps succeeded. | ||
| 18983 | #if VMA_STATS_STRING_ENABLED | ||
| 18984 | ✗ | (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage); | |
| 18985 | #endif | ||
| 18986 | ✗ | if (pAllocationInfo != VMA_NULL) | |
| 18987 | { | ||
| 18988 | ✗ | allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); | |
| 18989 | } | ||
| 18990 | |||
| 18991 | ✗ | return VK_SUCCESS; | |
| 18992 | } | ||
| 18993 | ✗ | allocator->FreeMemory( | |
| 18994 | 1, // allocationCount | ||
| 18995 | pAllocation); | ||
| 18996 | ✗ | *pAllocation = VK_NULL_HANDLE; | |
| 18997 | ✗ | (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); | |
| 18998 | ✗ | *pImage = VK_NULL_HANDLE; | |
| 18999 | ✗ | return res; | |
| 19000 | } | ||
| 19001 | ✗ | (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); | |
| 19002 | ✗ | *pImage = VK_NULL_HANDLE; | |
| 19003 | ✗ | return res; | |
| 19004 | } | ||
| 19005 | ✗ | return res; | |
| 19006 | } | ||
| 19007 | |||
| 19008 | VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( | ||
| 19009 | VmaAllocator allocator, | ||
| 19010 | VkImage image, | ||
| 19011 | VmaAllocation allocation) | ||
| 19012 | { | ||
| 19013 | ✗ | VMA_ASSERT(allocator); | |
| 19014 | |||
| 19015 | ✗ | if (image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) | |
| 19016 | { | ||
| 19017 | ✗ | return; | |
| 19018 | } | ||
| 19019 | |||
| 19020 | VMA_DEBUG_LOG("vmaDestroyImage"); | ||
| 19021 | |||
| 19022 | VMA_DEBUG_GLOBAL_MUTEX_LOCK | ||
| 19023 | |||
| 19024 | #if VMA_RECORDING_ENABLED | ||
| 19025 | if (allocator->GetRecorder() != VMA_NULL) | ||
| 19026 | { | ||
| 19027 | allocator->GetRecorder()->RecordDestroyImage( | ||
| 19028 | allocator->GetCurrentFrameIndex(), | ||
| 19029 | allocation); | ||
| 19030 | } | ||
| 19031 | #endif | ||
| 19032 | |||
| 19033 | ✗ | if (image != VK_NULL_HANDLE) | |
| 19034 | { | ||
| 19035 | ✗ | (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks()); | |
| 19036 | } | ||
| 19037 | ✗ | if (allocation != VK_NULL_HANDLE) | |
| 19038 | { | ||
| 19039 | ✗ | allocator->FreeMemory( | |
| 19040 | 1, // allocationCount | ||
| 19041 | &allocation); | ||
| 19042 | } | ||
| 19043 | } | ||
| 19044 | |||
| 19045 | #endif // #ifdef VMA_IMPLEMENTATION | ||
| 19046 |